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Genome-Wide Association 
Studies (GWAS) – #4



Meta-Analysis

We need very large sample sizes to detect associations with 
variants of small effect in GWAS

It is rare to have a large enough cohort to detect a large 
number of variants

- particularly for disease case control analysis

We can use a meta-analysis to combine results from a 
number of studies to effectively increase our sample size

Common approach for international consortia



Why Not One Big Analysis?

– Privacy

– Ethics

– Population stratification



Meta-Analysis

Done by pooling:
- Genetic effect of a SNP on a phenotype
- P-value of the association test

Many available approaches to perform a meta-analysis



Inverse Variance Weighted Method

Assumptions:
- There is one underlying ‘true’ effect
- All deviations of sample effects from the ‘true’ effect 
  are due to chance

Prerequisites:
- Same scale must be used across samples
- Same reference allele on same strand



Inverse Variance Weighted Method

Pooled effect estimate

Standard error
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Inverse Variance Weighted Method

Does the assumption of equal effect size hold up?

Cochran’s Q statistic  Test of homogeneity→

χ2-distributed with df=k-1      (k = number of samples)
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Inverse Variance Weighted Method

Possible causes of heterogeneity related to bias in samples:
- Differential selection of cases and controls
- Poor genotyping
- Poor genotype data cleaning
- Different SNP platforms (imputed vs. observed SNPs)
- Poor/differential phenotyping
- Population stratification

Possible causes from genuine differences across samples:
- Different LD structure across populations

(truly associated SNP vs. tested SNP)
- Different correlations of phenotypes across populations

(truly associated phenotype vs. tested phenotype)



Meta-Analysis Example

Forrest plot of association between irritable bowel syndrome 
and marker rs12702514



Polygenic Risk Prediction

Genetics, 1990



Many Names...

PRS Polygenic Risk Score 

PGS PolyGenic Score

GEBV Genomic Estimated Breeding Values



Toy Example

0  risk alleles
Homozygote AA

p2

81%

1 risk allele
Heterozygote AG

2p(1-p)
18%

2 risk alleles
Homozygote GG

(1-p)2

1%

G= risk allele
A = reference allele

p = frequency of risk  
      allele in the population
      10%

Imagine…
a disease with 100 
contributing risk 
alleles



Visualising Polygenic Risk

Not all affected individuals carry
the risk allele at any particular locus

Unaffected individuals carry many

  risk loci

Each affected person carries a 

 unique portfolio

Cases carry more risk variants on

 average



PRS Schematic
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Calculating PRS

The PRS is a weighted sum of SNP effects:

  = Weights

  = Effect from GWAS

  = SNP genotype (0, 1, 2)

PRS=∑ w i∗i xi

wi

i

PRS=∑ w i∗i xi

xi



PRS Weights

Weighting based on p-value:

Using a threshold well below GWAS significance (5 * 10-8) 
generally results in better predictors

Could also include “functional” information
- up-weight regions of the genome that are annotated to 
  have a biological function

wi={1; p<threshold0; p>threshold}



Handling Linkage Disequilibrium

Ignoring LD in PRS calculations results in worse predictors

Effects in regions of high LD get included in PRS multiple 
times, while those in low LD do not

“Clumping” SNPs to get semi-independant dataset
- take most significant SNP

  - remove all SNPs with LD r2 > 0.1
- take next most significant SNP
- ….



Quantifying PRS Accuracy

Quantitative traits:
Proportion of variance of trait PRS explains in target 

population
Correlation between PRS and trait squared   (R2)

Binary (case/control) traits:
Nagelkerke R2

Affected by case/control ratio in test cohort

Area Under the Curve  (AUC)



Area Under the Curve

Receiver Operating Characteristics (ROC) Curve

For disease traits, can be interpreted as the probability that 
a randomly chosen case has a higher score than a randomly 
chosen control



PRS Accuracy Depends On...

The genetic architecture of a disease
- How many risk loci
- How big the effect sizes
- Relative contribution of genetic factors to risk compared to 
  non-genetic factors

The sample size for detecting risk loci

How well our technology tracks genetic risk factors

The methodology that optimises risk prediction likely 
depends on genetic architecture, which is different for 
different diseases.



Schizophrenia

ISC
2,615

PGC1
9,320

PGC2
32,838 AUC = 0.61

PGC-SCZ 2014 Biological insights from 108 schizophrenia-associated genetic loci



Coronary Artery Disease

Kheera et al (2018) Genome-wide polygenic scores for common diseases identify
individuals with risk equivalent to monogenic mutations. Nature Genetics



Coronary Artery Disease

1 in 21

1 in 46

1 in 61

Torkamani et al.,
Nat Rev Genetics, 2018



 Inouye et al (2018) 
Genomic risk prediction of CAD in 
480K adults. JACC

Coronary Artery Disease

Polygenic risk 
scores alone

Polygenic risk scores plus all 
conventional risk factors



PRS Across Ancestries?

Most (~2/3) GWAS studies are performed in European 
populations, followed by East Asians (~1/4).

PRS developed in European populations tend to have poor
performance in other ancestral groups

- Different LD structure
     (clumping)

- Different allele frequencies

- Ancestry specific genetic
  effects?

Duncan et al., Nature Communications, 2019
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