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The Laws of inheritance

Pioner works of Mendel (mid-1800’s) established laws of inheri-
tance for discrete characters: size (tall vs. short), color, etc.

He introduced the concepts of dominance/recessiveness
which clarified the notions of genotypes and phenotypes.

I Example: Two individuals may have the same phenotype
without having the same genotype (Mendel’s peas).

Example of known prediction from Mendel’s Laws
Under sexual reproduction, if parents have the genotypes AB
and ab, then the children have the genotypes Aa, Ab, Ba and Bb
with probability 1/4.
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From Mendel to Fisher

Extension of Mendel’s Laws
Quantitative Genetics theory tries to deduce the consequences
of the laws of inheritance for quantitative traits1 in a population.

Founding contributions to the field

I Fisher (1918): infinitesimal model.
I Wright (1921)
I Haldane (1932)

1Other extensions of exists even for discrete traits.
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Infinitesimal Model2

I Large number of gene variants

I All having small effects

I Acting additively and independently

I According to Mendel’s Laws

2Barton et al. Theor. Pop. Biol. (2017)
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Some questions addressed by Q.G. theory

I Can we predict from genetic data how well an individual
would perform?

I How much can we predict of the risk of diseases from
genetic data?

I How to build breeding programs to enhance a particular
character in the population?

6 / 32



Basic model of Quantitative Genetics

Definition
We classically assume that a quantitative phenotype P results
from the contribution of genetic factors G and environmental fac-
tors E :

P = G + E (1)

In Equation (1) G, also referred to as Genotypic value, is the
average phenotype over all possible environments.

Example: 2 environments
I If the phenotypic value is 10 in Environment 1 and 20 in

Environment 2
I =⇒ then the genotypic value is G = 15.
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Non transmission of the genotypic value

More definitions
Under sexual reproduction, parents only pass along SINGLE
ALLELES to their offspring. The genotypic value of each par-
ent is therefore partially transmitted to the next generation.

We define the average effect of an allele A (αA) as the (mean)
phenotypic difference between offspring inheriting allele A com-
pared to all offspring:

αA =
Mean phenotype

in offspring with A allele
− Mean phenotype

in all offspring
(2)
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Fisher’s (1918) decomposition of the genotypic value
Decomposition of G
One of Fisher’s key insights was that G consists of a fraction that
can be passed from parent to offspring and a fraction that can
cannot.

Let A(`)
im and A(`)

if be the alleles that individual i inherited from
their mother and father respestively at the locus `.The genotypic
value G[A(`)

im A(`)
if ] of individual i at the locus ` can be decom-

posed (Fisher) as:

G[A(`)
im A(`)

if ] = µ
(`)
G +

(
α[A(`)

im ] + α[A(`)
if ]
)

+ δ[A(`)
im A(`)

if ]

passed along not passed
to offspring along

(3)

where µ
(`)
G is the mean value of that genotype in the population.

α[A(`)
im ] and α[A(`)

if ] contribute negative µ
(`)
G .

9 / 32



Fisher’s (1918) decomposition of the genotypic value

Additive Genetic Value (A)
In Equation (3), µ

(`)
G +

(
α[A(`)

im ] + α[A(`)
if ]
)

is the expected value

of an individual with the A(`)
im A(`)

if genotype and δ[A(`)
im A(`)

if ] is the
deviation from that expectation also called dominance deviation.

We define the Additive Genetic Value (A) or Breeding Value
of an individual i as the sum over all m loci influencing the trait
of the

(
α[A(`)

im ] + α[A(`)
if ]
)

:

Ai =
m

∑
`=1

(
α[A(`)

im ] + α[A(`)
if ]
)

(4)

Ai is also the mean value of all (potential/possible) offspring of
individual i .
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Genetic variance

Writing the genotypic value as

G[A(`)
im A(`)

if ] = µ
(`)
G +

(
α[A(`)

im ] + α[A(`)
if ]
)
+ δ[A(`)

im A(`)
if ]

We can calculate the variance of genetic values or simply the
genetic variance as

σ2
G = var

(
m

∑
`=1

G[A(`)
m A(`)

f ]

)

=
∑m
`=1 var

(
α[A(`)

m ] + α[A(`)
f ]
)

+ ∑m
`=1 var

(
δ[A(`)

m A(`)
f ]
)

Additive Dominance
Variance Variance

= σ2
A + σ2

D (5)

Note that cov[
(

α[A(`)
m ] + α[A(`)

f

)
], δ[A(`)

m A(`)
f ]] = 0 by design.
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Key concepts so far

I α(A): average effect. Property of a single allele in a
particular population (depends on allele frequency).

I A: additive genetic value.
I A is the sum over all loci of average effects.
I Fraction of G that parents pass along to their offspring
I Property of an individual in a particular population

I var (A): additive genetic variance.
I Variance of genetic additive values
I Property of a population

A and var (A) can be estimated without molecular/genetic data!
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(Part I)
Red pill or blue pill?

The concept of heritability
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Heritability

Definition
Under the basic model

P = G + E

we define the broad sense heritability H2 as the ratio
var (G)/var (P).

Heritability is central concept of QG.
Under Fisher decomposition G = A + D, we define the narrow
sense heritability h2 as the ratio var (A)/var (P), i.e. fraction of
phenotypic variance due to additive genetic values (breeding
values).
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Some observations...

I The amount of phenotypic resemblance among relatives
for a trait is an indication of the genetic variation for the
trait.

I If trait variation has a significant genetic basis, the closer
the relatives, the more similar their appearance.

I The covariance between phenotyic values of relatives
measures the strength of this similarity, with larger
covariance meaning more similarity.
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Covariance between relatives (1)

A quick exercise
We consider a locus with two alleles B and b.
We assume that the genotypic values are

G(BB) = 0,G(Bb) = a and G(bb) = 2a.

We denote G1 and G2 as the genotypic value of Parent 1 and 2
respectively. The genotypic value of the offspring of (1) and (2)
is GO = a (g1 + g2), with gi being the number of b alleles (0 or
1) transmitted by Parent (i).

Question: what is cov(Gi ,GO)?
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Covariance between relatives (1)

Solution
gi is the number of b alleles (0 or 1) transmitted by Parent (i)
=⇒ gi follows a Bernoulli distribution with probability Gi /2a.

cov(G1,GO) = cov [G1,a (g1 + g2)]

= a× cov [G1,g1] + a× cov [G1,g2]︸ ︷︷ ︸
=0, independence

= a× (E [G1g1]− E [G1]E [g1])

= a× (E [G1E [g1|G1]]− E [G1]E [E [g1|G1]])

=
a

2a
×
(

E [G2
1]− E [G1]

2
)

=
1
2

var (G1)

We have used three properties: (1) linearity of covariances, (2)
definition of coavriances as function of the expectation and (3)
E [X ] = E [E [X |Y ]].
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Covariance between relatives (1)

We can prove similarly that
I Parent-offspring covariance = σ2

A/2

I full-sib covariance = σ2
A/2 + σ2

D/4

General theorem
The genetic covariance between two individuals i and i ′ is

cov [Gi ,Gi ′ ] = 2θii ′σ
2
A + ∆ii ′σ

2
D (6)

where θii ′ is the coefficient of coancestry and ∆ii ′ is the coeffi-
cient of fraternity. We define those two coefficients further in the
lecture.
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Identity by Descent
Definition
Two alleles at one locus are said Identical By Descent or IBD3 if
they both can be traced back to a common ancestor. If there is
no common ancestor then those alleles are simply referred to as
Identical By State or IBS.

3Picture from Wikipedia.
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Coefficient of coancestry
Definition
The coefficient of coancestry θii ′ between two individuals i and
i ′ is the probability that two alleles picked at random in i and i ′

are IBD.

Example: parent - offspring
We denote P and O as the Parent and the Offspring
respectively. AP and AO are random allele from P and O
respectively.

θ(P,O) = P(AO IBD AP)

= P(AO IBD AP |AP transmitted)P(AP transmitted)
+P(AO IBD AP |AP untransmitted)︸ ︷︷ ︸

=0

P(AP untransmitted)

=
1
2
× 1

2
=

1
4
.
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Coefficient of coancestry

Other examples
I θ(Full − sibs) = 1/4
I θ(Half − sibs) = 1/8
I θ(First − cousins) = 1/16

Calculations for full sibs
...
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Coefficient of faternity
Definition
The coefficient of fraternity ∆ii ′ between two individuals i and i ′

is the probability that both alleles in i and i ′ are IBD.

If i is the offspring of mi and fi and i ′ the offspring of mi ′

and fi ′ then ∆ii ′ can be expressed as function of the coancestry
coefficients between mi , fi , mi ′ and fi ′ as

∆ii ′ = θ (mi ,mi ′) θ (fi , fi ′) + θ (mi , fi ′) θ (fi ,mi ′) (7)

Example: full sibs with unrelated parents
Full sibs share the same mother m and father f . Therefore

∆(Full sibs) = θ (m,m) θ (f , f ) + θ (m, f ) θ (f ,m)︸ ︷︷ ︸
=0

=
1
2
× 1

2
=

1
4
.
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Key concepts so far

I Heritability (broad sense: based on additive and
dominance / narrow sense: based on additive values):
H2 = var (G)/var (P) and h2 = var (A)/var (P).

I Genetic covariances arise because relatives share alleles
Identical By Descent (IBD).

I Genetic covariances between relatives is a function of
var (A), var (D) and of the coefficients of coancestry and
fraternity:

cov(X ,Y ) = 2θXY var (A) + ∆XY var (D)
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(Part II)
Red pill or blue pill?

Estimation of genetic variances
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Application

A forthcoming lecture will cover in depth how to estimate ge-
netic variances. We aim here to put in application some of the
concepts introduced in this lecture to estimate genetic variances
(heritability) in simple experimental designs.
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The origin of linear regression
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Parent-offspring regression

We have previously derived the genetic covariance (covariance
of breeding/additive value) between parent and offspring.

Since breeding values are not observable, can we esti-
mate heritability using phenotypic values? We use below the
subscripts p and o respectively for Parent and Offspring:

cov(Pp,Po) = cov(Gp + Ep,Go + Eo)

= cov(Gp,Go) + cov(Ep,Eo)

= 1/2var (A) + cov(Ep,Eo)

If environmental effects are not correlated between parent and
offspring, then

corr (Pp,Po) =
h2

2
.
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Monozygotic vs Dizygotic twins

We could refine the estimates of heritability using the following
observations and assumptions

I The phenotypic covariance between MZ twins is
covp(MZ ) = var (A) + var (D) + var (Shared Environment)

I "DZ twins are full sibs that share a common environment to
approximately the same extent as MZ twins".

I Dominance variance is small.
Therefore an approximate estimate of h2 can be obtained as
ĥ2 = 2(corp[MZ ]− corp[DZ ]) = [var (A) + var (D)/2︸ ︷︷ ︸

if small

]/var (P).
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Response to selection (alternative definition)

Heritability is important to predict response to selection
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Summary (1/2)

Quantitative Genetics theory answers questions such as
I How would an individual perform depending on its

genotype (e.g. breeding program)
I How/why do quantitative phenotypes correlate between

relatives?
We discussed key concepts such as the fact that

I "Genotypic values are not passed on to the offspring, only
the average (allelic) value."

I "The breeding value (or additive value) is the key quantity
to make predictions."
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Summary (2/2)

We introduced the notion of heritability h2 as the ratio between
the genetic variance (variance of breeding values) over the
phenotypic variance.

Heritability can also be approached through the pheno-
typic correlation between relatives (e.g. as correlation between
mid-parent and offspring) or through the breeder’s Equation.

Finally we showed few examples to estimate heritability
using phenotypic information from related individuals.
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