Linear models and linear mixed models
 STAT3306/7306

Dr. Loïc Yengo
(slides Dr. Florian Rohart)

The Institute for Molecular Bioscience

19/08/19

Outline

(1) Linear Models
(2) Linear Mixed Models

Outline

(1) Linear Models

- Simple Linear Regression
- Multiple Linear Regression
- Ordinary Least Squares (OLS)
- Likelihood
- Reminder Statistical Testing
- Likelihood Ratio Test (LRT)
- Generalised Least Squares (GLS)
- High-Dimensional LM
(2) Linear Mixed Models
- Fixed effects vs random effects
- Model Equation
- Mixed Model Equations (MME) - Henderson
- High-Dimensional LMM

Simple Linear Regression

Considering observing n samples from a simple linear model with only a single unknown slope parameter $\beta \in \mathbb{R}$,

$$
y_{i}=x_{i} \beta+e_{i}, \quad i=1, \ldots, n
$$

This is probably the simplest linear model.

- x_{i} are fixed and known quantities.
- y_{i} are observed and known quantities.
- we want to estimate β
- e_{i} are some noise, usually assumed Gaussian

Example

Example

Example

The error terms e_{i} are assumed to be independent and identically distributed (i.i.d) random variables with a normal density function: $e_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$

$$
\boldsymbol{e} \sim \mathcal{N}_{n}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)
$$

for some unknown variance $\sigma^{2}>0$.
I identity matrix of size $n \times n$,
$\mathbf{0}$ is a n-vector of 0 s .
$\mathcal{N}_{n}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)=\operatorname{MVN}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)$

Normal distribution

Density of a normally distributed random variable

The density function of a normally distributed random variable with mean μ and variance σ^{2} is given by:

$$
f\left(z ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^{2}\right\}
$$

for $z, \mu \in \mathbb{R}$, and $\sigma>0$.

The first term is a normalisation factor so that the density sums to 1 . The important part is:

$$
f\left(z ; \mu, \sigma^{2}\right) \propto \exp \left\{-0.5\left(\frac{z-\mu}{\sigma}\right)^{2}\right\}
$$

\propto : proportional to

A multiple regression is a typical linear model,

$$
\begin{aligned}
y_{i} & =x_{i 1} \beta_{1}+x_{i 2} \beta_{2}+\cdots+x_{i p} \beta_{p}+e_{i} \\
& =\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+e_{i}
\end{aligned}
$$

where \boldsymbol{X}_{i} is a $p \times 1$ vector of measurements and $\boldsymbol{\beta}$ is a vector of p parameters to estimate.

Matrix form of a linear regression

The model can also be written in a matrix form:

$$
y=X \beta+e
$$

where

- \boldsymbol{y} vector of n observed dependent values
- \boldsymbol{X} observations of the variables in the assumed linear model, $n \times p$ matrix
- $\boldsymbol{\beta}$ vector of p unknown parameters to estimate
- \boldsymbol{e} vector of residuals (deviation from the model fit), $\boldsymbol{e}=\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}$. Usually, assumed independent and identically distributed (i.i.d), $\boldsymbol{e} \sim \mathcal{N}_{n}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)$

Example

Suppose we have 3 variables in a multiple regression, with four (y, x) vectors of observations.

$$
y_{i}=\mu+x_{i 1} \beta_{1}+x_{i 2} \beta_{2}+x_{i 3} \beta_{3}+e_{i}
$$

In a matrix form, $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$, where
$y=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right), \boldsymbol{\beta}=\left(\begin{array}{c}\mu \\ \beta_{1} \\ \beta_{2} \\ \beta_{3}\end{array}\right), \boldsymbol{X}=\left(\begin{array}{llll}1 & x_{11} & x_{12} & x_{13} \\ 1 & x_{21} & x_{22} & x_{23} \\ 1 & x_{31} & x_{32} & x_{33} \\ 1 & x_{41} & x_{42} & x_{43}\end{array}\right), \boldsymbol{e}=\left(\begin{array}{l}e_{1} \\ e_{2} \\ e_{3} \\ e_{4}\end{array}\right)$
Details of both the experimental design and the observed values of the predictor variables all reside solely in X .

Ordinary Least Squares (OLS) - solution to $y=X \beta+e$

$$
\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{b} \in \mathbb{R}^{p}}{\arg \min }\left\{\|\boldsymbol{y}-\boldsymbol{X b}\|_{2}^{2}\right\}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}
$$

- The variance-covariance estimate for $\widehat{\boldsymbol{\beta}}$ is

$$
\operatorname{Var}(\widehat{\boldsymbol{\beta}})=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \sigma_{e}^{2}
$$

The ij -th element gives the covariance between the estimated of β_{i} and β_{j}.

$\operatorname{OLS}(\boldsymbol{\beta})=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$

proof

$$
\begin{aligned}
\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{b}\|_{2}^{2} & =(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{b})^{\top}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{b}) \\
& =\left(\boldsymbol{y}^{\top}-\boldsymbol{b}^{\top} \boldsymbol{X}^{\top}\right)(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{b}) \\
& =\boldsymbol{y}^{\top} \boldsymbol{y}-\boldsymbol{y}^{\top} \boldsymbol{X b}-\boldsymbol{b}^{\top} \boldsymbol{X}^{\top} \boldsymbol{y}+\boldsymbol{b}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{b} \\
& =\boldsymbol{y}^{\top} \boldsymbol{y}-2 \boldsymbol{y}^{\top} \boldsymbol{X b}+\boldsymbol{b}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X b} \\
\frac{\partial\left(\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{2}^{2}\right)}{\partial \boldsymbol{\beta}}=0 & \Longleftrightarrow-2 \boldsymbol{X}^{\top} \boldsymbol{y}+2 \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\beta}=0 \Longleftrightarrow \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{X}^{\top} \boldsymbol{y}
\end{aligned}
$$

$\boldsymbol{X}^{\top} \boldsymbol{X}$ needs to be invertible

R example

\#\# Fitting a linear model using Im
$>\operatorname{Im}\left(\right.$ longley\$Employed ${ }^{\sim}$., data $=$ Iongley)
Coefficients:

(Intercept)	GNP. deflator	GNP	Unemployed	Armed. Forces
-3.482e+03	$1.506 \mathrm{e}-02$	$-3.582 \mathrm{e}-02$	$-2.020 \mathrm{e}-02$	$-1.033 \mathrm{e}-02$
Population	Year			
$-5.110 \mathrm{e}-02$	$1.829 \mathrm{e}+00$			

\#\# Estimating beta with the formula
$>X=$ cbind ("intercept" = 1 , longley [, 1:6])\# add the intercept
$>Y=$ longley [,"Employed"]
$>$ beta $=$ solve ($\mathbf{t}(\mathrm{X}) \% * \% \mathrm{X}) \% * \% \mathrm{t}(\mathrm{X}) \% * \% \mathrm{Y}$
$>$ beta

	$[, 1]$
intercept	$-3.482259 \mathrm{e}+03$
GNP. deflator	$1.506187 \mathrm{e}-02$
GNP	$-3.581918 \mathrm{e}-02$
Unemployed	$-2.020230 \mathrm{e}-02$
Armed. Forces	$-1.033227 \mathrm{e}-02$
Population	$-5.110411 \mathrm{e}-02$
Year	$1.829151 \mathrm{e}+00$

Properties: OLS = BLUE

In the case of a linear model where the residuals are homoscedastic (equal variance), uncorrelated and have expectation zero, the OLS estimator is also the Best Linear Unbiased Estimator (BLUE), i.e the OLS estimator has the lowest variance among all the unbiased estimators.

Unbiased estimator

An estimator $\widehat{\theta}$ of θ is unbiased if and only if $E(\widehat{\theta})=\theta$, where E denotes the expectation

Likelihood (Sample of Normal Variables)

 $\left\{x_{1}, \ldots, x_{n}\right\}$ is a realisation of $\left\{X_{1}, \ldots, X_{n}\right\}$ where $X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, i.i.d.The likelihood of $\left\{x_{1}, \ldots, x_{n}\right\}$ is

$$
\begin{aligned}
L\left(\mu, \sigma^{2}\right)=L\left(\mu, \sigma^{2} ; x_{1}, \ldots, x_{n}\right) & =\operatorname{Pr}\left(\left(X_{1}=x_{1}\right) \cap\left(X_{2}=x_{2}\right) \cap \cdots \cap\left(X_{n}=x_{n}\right)\right) \\
a & =\prod_{i=1}^{n} \operatorname{Pr}\left(X_{i}=x_{i}\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right\} \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\}
\end{aligned}
$$

${ }^{\text {a }}$ because independent and identically distributed

The log-likelihood is

$$
\ell\left(\mu, \sigma^{2}\right)=\log \left(L\left(\mu, \sigma^{2}\right)\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

Likelihood (Linear Regression Model)

Consider the regression model:

$$
y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+e_{i}
$$

We have $y_{i} \sim \mathcal{N}\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$

Likelihood (Linear Regression Model)

Consider the regression model:

$$
y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+e_{i}
$$

We have $y_{i} \sim \mathcal{N}\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$

The likelihood of $\left\{x_{1}, \ldots, x_{n}\right\}$ is

$$
\begin{aligned}
L\left(\mu, \sigma^{2}\right)=L\left(\mu, \sigma^{2} ; x_{1}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right\} \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\}
\end{aligned}
$$

Likelihood (Linear Regression Model)

Consider the regression model:

$$
y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+e_{i}
$$

We have $y_{i} \sim \mathcal{N}\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$

The likelihood of $\left\{y_{1}, \ldots, y_{n}\right\}$ is

$$
\begin{aligned}
L\left(\boldsymbol{\beta}, \sigma^{2}\right)=L\left(\boldsymbol{\beta}, \sigma^{2} ; y_{1}, \ldots, y_{n}\right) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{y_{i}-\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}}{\sigma}\right)^{2}\right\} \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)^{2}\right\}
\end{aligned}
$$

Likelihood (Linear Regression Model)

Consider the regression model:

$$
y_{i}=\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}+e_{i}
$$

We have $y_{i} \sim \mathcal{N}\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}, \sigma^{2}\right)$

The likelihood of $\left\{y_{1}, \ldots, y_{n}\right\}$ is

$$
\begin{aligned}
L\left(\boldsymbol{\beta}, \sigma^{2}\right)=L\left(\boldsymbol{\beta}, \sigma^{2} ; y_{1}, \ldots, y_{n}\right) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{y_{i}-\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}}{\sigma}\right)^{2}\right\} \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)^{2}\right\}
\end{aligned}
$$

The log-likelihood is

$$
\ell\left(\boldsymbol{\beta}, \sigma^{2}\right)=\log \left(L\left(\boldsymbol{\beta}, \sigma^{2}\right)\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta}\right)^{2}
$$

Definition (Maximum Likelihood estimator)

A Maximum Likelihood Estimator (MLE) $\hat{\theta}$ of $\theta \in \Theta$ is a solution to the maximisation problem:

$$
\widehat{\theta}=\underset{\theta \in \Theta}{\arg \max } L(\theta) \quad \text { or equivalently } \quad \widehat{\theta}=\underset{\theta \in \Theta}{\arg \max } \ell(\theta)
$$

To obtain MLE, we solve the partial derivatives $\frac{\partial \ell(\theta)}{\partial \theta_{j}}, \quad j=1,2, \ldots$,
For the sample $\left\{x_{1}, \ldots, x_{n}\right\}$,

$$
\ell\left(\mu, \sigma^{2}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

Definition (Maximum Likelihood estimator)

A Maximum Likelihood Estimator (MLE) $\hat{\theta}$ of $\theta \in \Theta$ is a solution to the maximisation problem:

$$
\widehat{\theta}=\underset{\theta \in \Theta}{\arg \max } L(\theta) \quad \text { or equivalently } \quad \widehat{\theta}=\underset{\theta \in \Theta}{\arg \max } \ell(\theta)
$$

To obtain MLE, we solve the partial derivatives $\frac{\partial \ell(\theta)}{\partial \theta_{j}}, \quad j=1,2, \ldots$,
For the sample $\left\{x_{1}, \ldots, x_{n}\right\}$,

$$
\begin{gathered}
\ell\left(\mu, \sigma^{2}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \\
\frac{\partial \ell\left(\mu, \sigma^{2}\right)}{\partial \mu}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right) \text { and } \frac{\partial \ell\left(\mu, \sigma^{2}\right)}{\partial \sigma^{2}}=-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
\end{gathered}
$$

Definition (Maximum Likelihood estimator)

A Maximum Likelihood Estimator (MLE) $\hat{\theta}$ of $\theta \in \Theta$ is a solution to the maximisation problem:

$$
\widehat{\theta}=\underset{\theta \in \Theta}{\arg \max } L(\theta) \quad \text { or equivalently } \quad \widehat{\theta}=\underset{\theta \in \Theta}{\arg \max } \ell(\theta)
$$

To obtain MLE, we solve the partial derivatives $\frac{\partial \ell(\theta)}{\partial \theta_{j}}, \quad j=1,2, \ldots$,
For the sample $\left\{x_{1}, \ldots, x_{n}\right\}$,

$$
\begin{gathered}
\ell\left(\mu, \sigma^{2}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \\
\frac{\partial \ell\left(\mu, \sigma^{2}\right)}{\partial \mu}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right) \text { and } \frac{\partial \ell\left(\mu, \sigma^{2}\right)}{\partial \sigma^{2}}=-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \\
\left\{\begin{array} { l }
{ \frac { \partial \ell (\mu , \sigma ^ { 2 }) } { \partial \mu } = 0 } \\
{ \frac { \partial \ell (\mu , \sigma ^ { 2 }) } { \partial \sigma ^ { 2 } } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\widehat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\widehat{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
\end{array}\right.\right.
\end{gathered}
$$

\bar{x} is the mean of $\left(x_{1}, \ldots, x_{n}\right)$

Exercise

Calculate MLE of β and σ^{2} for a linear regression model. Verify that MLE is also OLS.

Exercise

Calculate MLE of β and σ^{2} for a linear regression model. Verify that MLE is also OLS.

What now?
We want to be able to test whether a model is better than another based on the log-likelihood (goodness of fit).

For instance, I estimated a model with 10 parameters, but maybe some of them are irrelevant. I want to assess whether a model with only 9 parameters is still a good fit to the data.

Likelihood ratio test

Reminder (?) on hypothesis testing - Example

Example: We want to test whether the population mean μ is 0 .

$$
H_{0}: \mu=0 \text { against } H_{1}: \mu \neq 0 .
$$

We have access to 10 observations x_{1}, \ldots, x_{10} and we use the sample mean \bar{x} to test the null hypothesis H_{0}

Reminder (?) on hypothesis testing - General Framework

H_{0} against H_{1}, tested with the statistic U, which is following a known distribution

Reminder (?) on hypothesis testing - General Framework

H_{0} against H_{1}, tested with the statistic U, which is following a known distribution

Reminder (?) on hypothesis testing - General Framework

H_{0} against H_{1}, tested with the statistic U, which is following a known distribution

Reminder (?) on hypothesis testing - General Framework

H_{0} against H_{1}, tested with the statistic U, which is following a known distribution

Reminder (?) on hypothesis testing - General Framework

H_{0} against H_{1}, tested with the statistic U, which is following a known distribution if pvalue $>\alpha$, then H_{0} is accepted

Reminder (?) on hypothesis testing - General Framework

H_{0} against H_{1}, tested with the statistic U, which is following a known distribution if pvalue $>\alpha$, then H_{0} is accepted if pvalue $<\alpha$, then H_{0} is rejected

The lower the p-value is, the stronger we reject H_{0}. Critical region $U>\alpha ; \alpha=$ type I error.

Likelihood Ratio Test (LRT)

For some subset $\Theta_{0} \subset \Theta$,

$$
H_{0}: \theta \in \Theta_{0} \text { against } H_{1}: \theta \notin \Theta_{0}
$$

The MLE of θ solves: $\widehat{\theta}=\arg \max L(\theta)$

$$
{ }_{\theta \in \Theta}
$$

The MLE of θ under H_{0} solves: $\widehat{\theta}_{0}=\underset{\theta \in \Theta_{0}}{\arg \max } L(\theta)$

Definition (Likelihood Ratio)

The likelihood ratio for testing H_{0} vs H_{1} is defined as

$$
\Lambda=\frac{L\left(\widehat{\theta}_{0}\right)}{L(\widehat{\theta})}
$$

- $0<\Lambda \leq 1$
- Higher values of Λ are evidence in favour of H_{0}
- Lower values of Λ are evidence against H_{0}
- Critical region: $\left\{x \mid \Lambda \leq \lambda_{0}\right\}$ where $0 \leq \lambda_{0} \leq 1$.

log-LRT

Definition (log-Likelihood Ratio)
The log-likelihood ratio for testing H_{0} vs H_{1} is defined as

$$
-2 \times \log (\Lambda)=-2 \times \log \left[\frac{L\left(\widehat{\theta}_{0}\right)}{L(\widehat{\theta})}\right]=2\left[\ell(\widehat{\theta})-\ell\left(\widehat{\theta}_{0}\right)\right]
$$

log-LRT

Definition (log-Likelihood Ratio)

The log-likelihood ratio for testing H_{0} vs H_{1} is defined as

$$
-2 \times \log (\Lambda)=-2 \times \log \left[\frac{L\left(\widehat{\theta}_{0}\right)}{L(\widehat{\theta})}\right]=2\left[\ell(\widehat{\theta})-\ell\left(\widehat{\theta}_{0}\right)\right]
$$

Example
Full model $y_{i}=x_{i 1} \beta_{1}+x_{i 2} \beta_{2}+e_{i}$, which is solved by $\left(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^{2}\right)$
Sub-model $y_{i}=x_{i 1} \beta_{1}+e_{i}$, which is solved by $\left(\widehat{\boldsymbol{\beta}}_{0}, \widehat{\sigma}_{0}^{2}\right)$,

log-LRT

Definition (log-Likelihood Ratio)

The log-likelihood ratio for testing H_{0} vs H_{1} is defined as

$$
-2 \times \log (\Lambda)=-2 \times \log \left[\frac{L\left(\widehat{\theta}_{0}\right)}{L(\widehat{\theta})}\right]=2\left[\ell(\widehat{\theta})-\ell\left(\widehat{\theta}_{0}\right)\right]
$$

Example
Full model $y_{i}=x_{i 1} \beta_{1}+x_{i 2} \beta_{2}+e_{i}$, which is solved by $\left(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^{2}\right)$
Sub-model $y_{i}=x_{i 1} \beta_{1}+e_{i}$, which is solved by $\left(\widehat{\boldsymbol{\beta}}_{0}, \widehat{\sigma}_{0}^{2}\right)$,

$$
\Theta_{0}=
$$

log-LRT

Definition (log-Likelihood Ratio)

The log-likelihood ratio for testing H_{0} vs H_{1} is defined as

$$
-2 \times \log (\Lambda)=-2 \times \log \left[\frac{L\left(\widehat{\theta}_{0}\right)}{L(\widehat{\theta})}\right]=2\left[\ell(\widehat{\theta})-\ell\left(\widehat{\theta}_{0}\right)\right]
$$

Example
Full model $y_{i}=x_{i 1} \beta_{1}+x_{i 2} \beta_{2}+e_{i}$, which is solved by $\left(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^{2}\right)$
Sub-model $y_{i}=x_{i 1} \beta_{1}+e_{i}$, which is solved by $\left(\widehat{\boldsymbol{\beta}}_{0}, \widehat{\sigma}_{0}^{2}\right)$,

$$
\Theta_{0}=\left\{\sigma^{2}, \boldsymbol{\beta}: \beta_{2}=0\right\}, \quad H_{0}: \boldsymbol{\beta} \in \Theta_{0} \text { against } H_{1}: \boldsymbol{\beta} \notin \Theta_{0}
$$

log-LRT

Definition (log-Likelihood Ratio)

The log-likelihood ratio for testing H_{0} vs H_{1} is defined as

$$
-2 \times \log (\Lambda)=-2 \times \log \left[\frac{L\left(\widehat{\theta}_{0}\right)}{L(\widehat{\theta})}\right]=2\left[\ell(\widehat{\theta})-\ell\left(\widehat{\theta}_{0}\right)\right]
$$

Example

Full model $y_{i}=x_{i 1} \beta_{1}+x_{i 2} \beta_{2}+e_{i}$, which is solved by $\left(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^{2}\right)$
Sub-model $y_{i}=x_{i 1} \beta_{1}+e_{i}$, which is solved by $\left(\widehat{\boldsymbol{\beta}}_{0}, \widehat{\sigma}_{0}^{2}\right)$,

$$
\begin{gathered}
\Theta_{0}=\left\{\sigma^{2}, \boldsymbol{\beta}: \beta_{2}=0\right\}, \quad H_{0}: \boldsymbol{\beta} \in \Theta_{0} \text { against } H_{1}: \boldsymbol{\beta} \notin \Theta_{0} \\
\ell\left(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^{2}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\widehat{\sigma}^{2}\right)-\frac{1}{2 \widehat{\sigma}^{2}} \sum_{i=1}^{n}\left(y_{i}-x_{i 1} \widehat{\beta}_{1}-x_{i 2} \widehat{\beta}_{2}\right)^{2}
\end{gathered}
$$

log-LRT

Definition (log-Likelihood Ratio)

The log-likelihood ratio for testing H_{0} vs H_{1} is defined as

$$
-2 \times \log (\Lambda)=-2 \times \log \left[\frac{L\left(\widehat{\theta}_{0}\right)}{L(\widehat{\theta})}\right]=2\left[\ell(\widehat{\theta})-\ell\left(\widehat{\theta}_{0}\right)\right]
$$

Example

Full model $y_{i}=x_{i 1} \beta_{1}+x_{i 2} \beta_{2}+e_{i}$, which is solved by $\left(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^{2}\right)$
Sub-model $y_{i}=x_{i 1} \beta_{1}+e_{i}$, which is solved by $\left(\widehat{\boldsymbol{\beta}}_{0}, \widehat{\sigma}_{0}^{2}\right)$,

$$
\begin{gathered}
\Theta_{0}=\left\{\sigma^{2}, \boldsymbol{\beta}: \beta_{2}=0\right\}, \quad H_{0}: \boldsymbol{\beta} \in \Theta_{0} \text { against } H_{1}: \boldsymbol{\beta} \notin \Theta_{0} \\
\ell\left(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^{2}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\widehat{\sigma}^{2}\right)-\frac{1}{2 \widehat{\sigma}^{2}} \sum_{i=1}^{n}\left(y_{i}-x_{i 1} \widehat{\beta}_{1}-x_{i 2} \widehat{\beta}_{2}\right)^{2} \\
\ell\left(\widehat{\boldsymbol{\beta}}_{0}, \widehat{\sigma}_{0}^{2}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\widehat{\sigma}_{0}^{2}\right)-\frac{1}{2 \widehat{\sigma}_{0}^{2}} \sum_{i=1}^{n}\left(y_{i}-x_{i 1} \widehat{\beta}_{01}\right)^{2}
\end{gathered}
$$

log-LRT

Definition (log-Likelihood Ratio)

The log-likelihood ratio for testing H_{0} vs H_{1} is defined as

$$
-2 \times \log (\Lambda)=-2 \times \log \left[\frac{L\left(\widehat{\theta}_{0}\right)}{L(\widehat{\theta})}\right]=2\left[\ell(\widehat{\theta})-\ell\left(\widehat{\theta}_{0}\right)\right]
$$

Example

Full model $y_{i}=x_{i 1} \beta_{1}+x_{i 2} \beta_{2}+e_{i}$, which is solved by $\left(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^{2}\right)$
Sub-model $y_{i}=x_{i 1} \beta_{1}+e_{i}$, which is solved by $\left(\widehat{\boldsymbol{\beta}}_{0}, \widehat{\sigma}_{0}^{2}\right)$,

$$
\begin{gathered}
\Theta_{0}=\left\{\sigma^{2}, \boldsymbol{\beta}: \beta_{2}=0\right\}, \quad H_{0}: \boldsymbol{\beta} \in \Theta_{0} \text { against } H_{1}: \boldsymbol{\beta} \notin \Theta_{0} \\
\ell\left(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^{2}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\widehat{\sigma}^{2}\right)-\frac{1}{2 \widehat{\sigma}^{2}} \sum_{i=1}^{n}\left(y_{i}-x_{i 1} \widehat{\beta}_{1}-x_{i 2} \widehat{\beta}_{2}\right)^{2} \\
\ell\left(\widehat{\boldsymbol{\beta}}_{0}, \widehat{\sigma}_{0}^{2}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\widehat{\sigma}_{0}^{2}\right)-\frac{1}{2 \widehat{\sigma}_{0}^{2}} \sum_{i=1}^{n}\left(y_{i}-x_{i 1} \widehat{\beta}_{01}\right)^{2} \\
-2 \times \log (\Lambda)=2\left[\ell\left(\widehat{\boldsymbol{\beta}}, \widehat{\sigma}^{2}\right)-\ell\left(\widehat{\boldsymbol{\beta}}_{0}, \widehat{\sigma}_{0}^{2}\right)\right]
\end{gathered}
$$

Generalised Least Squares

GLS

Residuals are heteroscedastic and/or dependent, $\boldsymbol{e} \sim \mathcal{N}_{n}(\mathbf{0}, \boldsymbol{V})$. The linear model becomes

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}, \operatorname{Var}(\boldsymbol{e})=\sigma_{e}^{2} \boldsymbol{R}
$$

- OLS: special case of GLS, where $\operatorname{Var}(\boldsymbol{e})=\sigma_{e}^{2} \boldsymbol{I}$.
- The GLS estimate is GLS $(\boldsymbol{\beta})=\left(\boldsymbol{X}^{\top} \boldsymbol{R}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{R}^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$
- The variance-covariance of the estimated model parameters is given by

$$
\operatorname{Var}(\widehat{\boldsymbol{\beta}})=\left(\boldsymbol{X}^{\top} \boldsymbol{R}^{-1} \boldsymbol{X}\right)^{-1} \sigma_{e}^{2}
$$

Exercise: how do you get the GLS estimate?
The trick is to pre-multiply $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ by $\boldsymbol{R}^{-1 / 2}$:
$\boldsymbol{R}^{-1 / 2} \boldsymbol{y}=\boldsymbol{R}^{-1 / 2} \boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{R}^{-1 / 2} \boldsymbol{e}$
$\boldsymbol{z}=\boldsymbol{Z} \beta+\boldsymbol{f}$ with $\boldsymbol{f} \sim \mathcal{N}\left(0, \boldsymbol{I} \sigma_{e}^{2}\right)$, and then apply an OLS.

Summary OLS vs GLS

OLS

GLS

Assumed distribution of residuals $\boldsymbol{e} \sim\left(\mathbf{0}, \sigma_{e}^{2} \boldsymbol{I}\right) \quad \boldsymbol{e} \sim(\mathbf{0}, \boldsymbol{V})$
Least-squares estimator of $\boldsymbol{\beta}$
$\operatorname{Var}(\widehat{\boldsymbol{\beta}})$

$$
\begin{array}{ll}
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y} & \widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{y} \\
\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \sigma_{e}^{2} & \left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{X}\right)^{-1}
\end{array}
$$

Predicted values, $\widehat{\boldsymbol{y}}=\boldsymbol{X} \widehat{\boldsymbol{\beta}}$
$\boldsymbol{X}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$
$\boldsymbol{X}\left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{y}$
$\operatorname{Var}(\widehat{\boldsymbol{y}})$
$\boldsymbol{X}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \sigma_{e}^{2} \quad \boldsymbol{X}\left(\boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}$

Problems with High-Dimensional Linear Model

high-dimension, $n<p$

Same model as before

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}
$$

where $\boldsymbol{X} n \times p$ matrix, and $p>n$, or $p \gg n$

Example

```
## small high-dimensional dataset, 3 * 6
>X
    ENSG00000000003 ENSG00000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460 ENSG00000000938
\begin{tabular}{lllllll} 
sample1 & 0.8656802 & 0.2445878 & 0.9027015 & 0.3773931 & 0.3773931 & 0.008697272 \\
sample2 & 0.8561306 & 0.1807828 & 0.8853417 & 0.4156058 & 0.4156058 & 0.098042092 \\
sample3 & 0.8870595 & 0.1840356 & 0.8915388 & 0.4016337 & 0.4016337 & 0.082282120
\end{tabular}
```

$\boldsymbol{X}^{\top} \boldsymbol{X}$ is not invertible.

```
> solve(t(X)%*% X)
Error in solve.default(t(X) %*% X)
    Lapack routine dgesv: system is exactly singular: U[5,5] = 0
```

We can estimate at most n parameters. Here we have more parameters $(p=6)$ to estimate than observations $(n=3)$. We have lost identifiability: no unique $\boldsymbol{\beta}$ (we can find several $\boldsymbol{\beta}$ solution to $\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{X}^{\top} \boldsymbol{y}$)

Solutions to High-Dimensional Linear Model

- add a constraint to the optimisation problem - like Lasso $\left(\ell^{1}\right)$, Ridge $\left(\ell^{2}\right)$, Elastic net (mixed ℓ^{1} and ℓ^{2}).

Lasso (Tibshirani 1996)

$$
\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{b} \in \mathbb{R}^{P},\|\boldsymbol{b}\|_{1}<\lambda}{\arg \min }\left\{\|\boldsymbol{y}-\boldsymbol{X b}\|_{2}^{2}\right\},
$$

where $\lambda>0$ is the penalty or regularisation parameter, and control the amount of shrinkage (and the number of non zero coefficients in \boldsymbol{b})

- one parameter at a time

Marginal regression, $\boldsymbol{y}=\boldsymbol{X}_{j} \beta_{j}+\boldsymbol{e}$
For all $j \in\{1,2, \ldots, p\}$

$$
\widehat{\beta}_{j}=\underset{b \in \mathbb{R}}{\arg \min }\left\{\left\|\boldsymbol{y}-\boldsymbol{X}_{j} b\right\|_{2}^{2}\right\}=\left(\boldsymbol{X}_{j}^{\top} \boldsymbol{X}_{j}\right)^{-1} \boldsymbol{X}_{j}^{\top} \boldsymbol{y}
$$

Outline

(1) Linear Models

- Simple Linear Regression
- Multiple Linear Regression
- Ordinary Least Squares (OLS)
- Likelihood
- Reminder Statistical Testing
- Likelihood Ratio Test (LRT)
- Generalised Least Squares (GLS)
- High-Dimensional LM
(2) Linear Mixed Models
- Fixed effects vs random effects
- Model Equation
- Mixed Model Equations (MME) - Henderson
- High-Dimensional LMM

Fixed effects vs random effects

Factor effects are either fixed or random.

- Fixed: The levels in the study represent all levels of interest
- Random: The levels in the study represent only a sample of the levels of interest. Levels are considered to be drawn from an infinite population of levels.

What do you think?

Gender, year to year variation in rainfall at a location, school

We generally speak of estimating fixed factors (BLUE) and predicting random effects (BLUP - Best linear unbiased Predictor).

Mixed models (MM)

Mixed models (MM) contain both fixed and random factors

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\mathbf{Z u}+\boldsymbol{e}
$$

where

- \boldsymbol{y} vector of observed dependent values, with mean $E(\boldsymbol{y})=\boldsymbol{X} \boldsymbol{\beta}$
- $\boldsymbol{\beta}$ vector of unknown parameters to estimate (fixed effects)
- \boldsymbol{u} vector of unknown random effects, with mean $E(\boldsymbol{u})=0$ and variance-covariance $\operatorname{Var}(\boldsymbol{u})=\boldsymbol{G}$
- \boldsymbol{e} vector of residuals, with mean $E(\boldsymbol{e})=0$ and variance-covariance $\operatorname{Var}(\boldsymbol{e})=\boldsymbol{R}$
- \boldsymbol{X} and \boldsymbol{Z} are design matrices

Example

Suppose we have 3 variables in a multiple regression, with four (y, x) vectors of observations.

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\mathbf{Z u}+\boldsymbol{e}
$$

where
$\boldsymbol{y}=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{5}\end{array}\right), \boldsymbol{\beta}=\left(\begin{array}{c}\mu \\ \beta_{1} \\ \beta_{2}\end{array}\right), \boldsymbol{X}=\left(\begin{array}{lll}1 & x_{11} & x_{12} \\ 1 & x_{21} & x_{22} \\ 1 & x_{31} & x_{32} \\ 1 & x_{41} & x_{42} \\ 1 & x_{51} & x_{52}\end{array}\right), \boldsymbol{Z}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$,
$\boldsymbol{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right), \boldsymbol{u} \sim \mathcal{N}_{3}\left(\mathbf{0}, \sigma_{u}^{2} \boldsymbol{l}_{3}\right)$
$\boldsymbol{e}=\left(\begin{array}{l}e_{1} \\ e_{2} \\ e_{3} \\ e_{4} \\ e_{5}\end{array}\right), \boldsymbol{e} \sim \mathcal{N}_{5}\left(\mathbf{0}, \sigma_{e}^{2} \boldsymbol{l}_{3}\right)$
We estimate $\boldsymbol{\beta}$ and we predict \boldsymbol{u} (we do not want the values u_{1}, u_{2}, u_{3} but we want σ_{u}^{2}).
k effects, two possibilities:

- treated as fixed effects: we lose k degrees of freedom.
- treated as random effects from $\mathcal{N}\left(0, \sigma^{2}\right)$: only one degree of freedom is lost (estimating the variance) and we can then predict the values of the k realisations.

MME

Mixed Model Equations (MME)

$$
\left(\begin{array}{cc}
\boldsymbol{X}^{\top} \boldsymbol{R}^{-1} \boldsymbol{X} & \boldsymbol{X}^{\top} \boldsymbol{R}^{-1} \boldsymbol{Z} \\
\boldsymbol{Z}^{\top} \boldsymbol{R}^{-1} \boldsymbol{X} & \boldsymbol{Z}^{\top} \boldsymbol{R}^{-1} \boldsymbol{Z}+\boldsymbol{G}^{-1}
\end{array}\right)\binom{\widehat{\boldsymbol{\beta}}}{\widehat{\boldsymbol{u}}}=\binom{\boldsymbol{X}^{\top} \boldsymbol{R}^{-1} \boldsymbol{y}}{\boldsymbol{Z}^{\top} \boldsymbol{R}^{-1} \boldsymbol{y}}
$$

The solutions to the MME are the best linear unbiased estimates ($\widehat{\boldsymbol{\beta}}, \mathrm{BLUE}$) and predictors ($\widehat{\boldsymbol{u}}$, BLUP) for $\boldsymbol{\beta}$ and \boldsymbol{u}.

Usually solved by an EM algorithm (Expectation-Maximisation).

Note that $\widehat{\boldsymbol{\beta}}$ is the GLS estimate from the marginal model: $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{e}$ with $\boldsymbol{e} \sim \mathcal{N}_{n}(\mathbf{0}, \boldsymbol{V})$ and $\boldsymbol{V}=\boldsymbol{Z G} \boldsymbol{Z}^{\top}+\boldsymbol{R}$

Problems with High-Dimensional Linear Mixed Model

high-dimension, $n<p$
Same model as before

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\mathbf{Z u}+\boldsymbol{e}
$$

where $\boldsymbol{X} n \times p$ matrix, and $p>n$, or $p \gg n$

Solution to the problem,

- add constraints to the optimisation problem
- one parameter at a time

Summary

- Least Squares

$$
\widehat{\boldsymbol{\beta}}=\underset{\boldsymbol{b} \in \mathbb{R}^{p}}{\arg \min }\left\{\|\boldsymbol{y}-\boldsymbol{X b}\|_{2}^{2}\right\}
$$

	OLS
Assumed distribution of residuals	$\boldsymbol{e} \sim\left(\mathbf{0}, \sigma_{e}^{2} \boldsymbol{I}\right)$ Least-squares estimator of $\boldsymbol{\beta}$
$\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}$ $\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \sigma_{e}^{2}$	
$\operatorname{Var}(\widehat{\boldsymbol{\beta}})$	
Likelihood ratio test	$\Lambda=\frac{L\left(\widehat{\theta}_{0}\right)}{L(\widehat{\theta})}$

- Fixed vs Random effects
- Fixed: The levels in the study represent all levels of interest, e.g. gender
- Random: The levels are considered to be drawn from an infinite population of levels, e.g. a batch

