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Linear Models Simple Linear Regression

Simple Linear Regression

Considering observing n samples from a simple linear model with only a single unknown
slope parameter β ∈ R,

yi = xiβ + ei , i = 1, . . . , n

This is probably the simplest linear model.

xi are fixed and known quantities.

yi are observed and known quantities.

we want to estimate β

ei are some noise, usually assumed Gaussian
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Linear Models Simple Linear Regression

Example
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Linear Models Simple Linear Regression

Example
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Linear Models Simple Linear Regression

The error terms ei are assumed to be independent and identically distributed (i.i.d)
random variables with a normal density function: ei ∼ N (0, σ2)

e ∼ Nn(0, σ2I )

for some unknown variance σ2 > 0.

I identity matrix of size n × n ,
0 is a n-vector of 0s.
Nn(0, σ2I ) = MVN(0, σ2I )
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Linear Models Simple Linear Regression

Normal distribution
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Linear Models Simple Linear Regression

Density of a normally distributed random variable

The density function of a normally distributed random variable with mean µ and variance
σ2 is given by:

f (z ;µ, σ2) =
1√

2πσ2
exp

{
−1

2

(z − µ
σ

)2
}

for z , µ ∈ R, and σ > 0.

The first term is a normalisation factor so that the density sums to 1.
The important part is:

f (z ;µ, σ2) ∝ exp

{
−0.5

(z − µ
σ

)2
}

∝: proportional to

8/34 F.Rohart STAT3306/7306 19/08/19 8 / 34



Linear Models Multiple Linear Regression

A multiple regression is a typical linear model,

yi = xi1β1 + xi2β2 + · · ·+ xipβp + ei

= X>i β + ei

where Xi is a p × 1 vector of measurements and β is a vector of p parameters to
estimate.

Matrix form of a linear regression

The model can also be written in a matrix form:

y = Xβ + e

where

y vector of n observed dependent values

X observations of the variables in the assumed linear model, n × p matrix

β vector of p unknown parameters to estimate

e vector of residuals (deviation from the model fit), e = y − Xβ. Usually, assumed
independent and identically distributed (i.i.d), e ∼ Nn(0, σ2I )

9/34 F.Rohart STAT3306/7306 19/08/19 9 / 34



Linear Models Multiple Linear Regression

Example

Suppose we have 3 variables in a multiple regression, with four (y , x) vectors of
observations.

yi = µ+ xi1β1 + xi2β2 + xi3β3 + ei

In a matrix form, y = Xβ + e, where

y =


y1

y2

y3

y4

 ,β =


µ
β1

β2

β3

 ,X =


1 x11 x12 x13

1 x21 x22 x23

1 x31 x32 x33

1 x41 x42 x43

 , e =


e1

e2

e3

e4


Details of both the experimental design and the observed values of the predictor variables
all reside solely in X.
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Linear Models Ordinary Least Squares (OLS)

Ordinary Least Squares (OLS) - solution to y = Xβ + e

OLS

β̂ = arg min
b∈Rp

{||y − Xb||22} = (X>X )−1X>y

The variance-covariance estimate for β̂ is

Var(β̂) = (X>X )−1σ2
e

The ij-th element gives the covariance between the estimated of βi and βj .

11/34 F.Rohart STAT3306/7306 19/08/19 11 / 34



Linear Models Ordinary Least Squares (OLS)

OLS(β) = (X>X )−1X>y

proof

||y − Xb||22 = (y − Xb)>(y − Xb)

= (y> − b>X>)(y − Xb)

= y>y − y>Xb − b>X>y + b>X>Xb
= y>y − 2y>Xb + b>X>Xb

∂
(
||y − Xβ||22

)
∂β

= 0 ⇐⇒ −2X>y + 2X>Xβ = 0 ⇐⇒ X>Xβ = X>y

X>X needs to be invertible
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Linear Models Ordinary Least Squares (OLS)

R example

## F i t t i n g a l i n e a r model u s i n g lm
> lm ( l o n g l e y $Employed ˜ . , data = l o n g l e y )
C o e f f i c i e n t s :

( I n t e r c e p t ) GNP. d e f l a t o r GNP Unemployed Armed . F o r c e s
−3.482 e+03 1 . 5 0 6 e−02 −3.582 e−02 −2.020 e−02 −1.033 e−02
P o p u l a t i o n Year
−5.110 e−02 1 . 8 2 9 e+00

## Es t ima t i ng beta wi th the fo rmu la
> X = cb ind ( ” i n t e r c e p t ” = 1 , l o n g l e y [ , 1 : 6 ] )# add the i n t e r c e p t
> Y = l o n g l e y [ , ” Employed ” ]

> beta = s o l v e ( t (X) %∗% X ) %∗% t (X) %∗% Y
> beta

[ , 1 ]
i n t e r c e p t −3.482259 e+03
GNP. d e f l a t o r 1 .506187 e−02
GNP −3.581918 e−02
Unemployed −2.020230 e−02
Armed . F o r c e s −1.033227 e−02
P o p u l a t i o n −5.110411 e−02
Year 1 .829151 e+00
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Linear Models Ordinary Least Squares (OLS)

Properties: OLS = BLUE

In the case of a linear model where the residuals are homoscedastic (equal variance),
uncorrelated and have expectation zero, the OLS estimator is also the Best Linear
Unbiased Estimator (BLUE), i.e the OLS estimator has the lowest variance among all
the unbiased estimators.

Unbiased estimator

An estimator θ̂ of θ is unbiased if and only if E(θ̂) = θ, where E denotes the expectation
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Linear Models Likelihood

Likelihood (Sample of Normal Variables)
{x1, . . . , xn} is a realisation of {X1, . . . ,Xn} where Xi ∼ N (µ, σ2), i.i.d.

The likelihood of {x1, . . . , xn} is

L(µ, σ2) = L(µ, σ2; x1, . . . , xn) = Pr ((X1 = x1) ∩ (X2 = x2) ∩ · · · ∩ (Xn = xn))

a =
n∏

i=1

Pr(Xi = xi )

=
n∏

i=1

1√
2πσ2

exp

{
−1

2

(xi − µ
σ

)2
}

=

(
1

2πσ2

)n/2

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
abecause independent and identically distributed

The log-likelihood is

`(µ, σ2) = log(L(µ, σ2)) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2
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Linear Models Likelihood

Likelihood (Linear Regression Model)

Consider the regression model:
yi = X>i β + ei

We have yi ∼ N (X>i β, σ2)

The likelihood of {y1, . . . , yn} is

L(β, σ2) = L(β, σ2; y1, . . . , yn) =
n∏

i=1

1√
2πσ2

exp

{
−1

2

(
yi − x>i β

σ

)2
}

=

(
1

2πσ2

)n/2

exp

{
− 1

2σ2

n∑
i=1

(
yi − x>i β

)2
}
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Linear Models Likelihood

Definition (Maximum Likelihood estimator)

A Maximum Likelihood Estimator (MLE) θ̂ of θ ∈ Θ is a solution to the maximisation
problem:

θ̂ = arg max
θ∈Θ

L(θ) or equivalently θ̂ = arg max
θ∈Θ

`(θ)

To obtain MLE, we solve the partial derivatives ∂`(θ)
∂θj

, j = 1, 2, . . . ,

For the sample {x1, . . . , xn},

`(µ, σ2) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2

∂`(µ, σ2)

∂µ
=

1

σ2

n∑
i=1

(xi − µ) and
∂`(µ, σ2)

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(xi − µ)2


∂`(µ, σ2)

∂µ
= 0

∂`(µ, σ2)

∂σ2
= 0

⇐⇒


µ̂ =

1

n

n∑
i=1

xi

σ̂2 =
1

n

n∑
i=1

(xi − x̄)2

x̄ is the mean of (x1, . . . , xn)
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Linear Models Likelihood
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Linear Models Likelihood

Exercise

Calculate MLE of β and σ2 for a linear regression model.
Verify that MLE is also OLS.

What now?
We want to be able to test whether a model is better than another based on the
log-likelihood (goodness of fit).

For instance, I estimated a model with 10 parameters, but maybe some of them are
irrelevant. I want to assess whether a model with only 9 parameters is still a good fit to
the data.

Likelihood ratio test
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Linear Models Reminder Statistical Testing

Reminder (?) on hypothesis testing - Example

Example: We want to test whether the population mean µ is 0.

H0 : µ = 0 against H1 : µ 6= 0.

We have access to 10 observations x1, . . . , x10 and we use the sample mean x̄ to test the
null hypothesis H0
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Linear Models Reminder Statistical Testing

Reminder (?) on hypothesis testing - General Framework

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

H0 against H1, tested with the statistic U, which is following a known distribution

if pvalue > α, then H0 is accepted
if pvalue < α, then H0 is rejected

The lower the p-value is, the stronger we reject H0.
Critical region U > α; α= type I error.
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H0 against H1, tested with the statistic U, which is following a known distribution

if pvalue > α, then H0 is accepted
if pvalue < α, then H0 is rejected
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Linear Models Reminder Statistical Testing

Reminder (?) on hypothesis testing - General Framework

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

U=15
p-value

H0 against H1, tested with the statistic U, which is following a known distribution

if pvalue > α, then H0 is accepted
if pvalue < α, then H0 is rejected

The lower the p-value is, the stronger we reject H0.
Critical region U > α; α= type I error.

20/34 F.Rohart STAT3306/7306 19/08/19 20 / 34



Linear Models Reminder Statistical Testing

Reminder (?) on hypothesis testing - General Framework
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H0 against H1, tested with the statistic U, which is following a known distribution

if pvalue > α, then H0 is accepted
if pvalue < α, then H0 is rejected

The lower the p-value is, the stronger we reject H0.
Critical region U > α; α= type I error.
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Linear Models Reminder Statistical Testing

Reminder (?) on hypothesis testing - General Framework

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

10% 5%

H0 against H1, tested with the statistic U, which is following a known distribution

if pvalue > α, then H0 is accepted

if pvalue < α, then H0 is rejected
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Linear Models Reminder Statistical Testing

Reminder (?) on hypothesis testing - General Framework

0 5 10 15 20 25 30
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H0 against H1, tested with the statistic U, which is following a known distribution

if pvalue > α, then H0 is accepted
if pvalue < α, then H0 is rejected

The lower the p-value is, the stronger we reject H0.
Critical region U > α; α= type I error.
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Linear Models Likelihood Ratio Test (LRT)

Likelihood Ratio Test (LRT)
For some subset Θ0 ⊂ Θ,

H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0

The MLE of θ solves: θ̂ = arg max
θ∈Θ

L(θ)

The MLE of θ under H0 solves: θ̂0 = arg max
θ∈Θ0

L(θ)

Definition (Likelihood Ratio)

The likelihood ratio for testing H0 vs H1 is defined as

Λ =
L(θ̂0)

L(θ̂)

0 < Λ ≤ 1

Higher values of Λ are evidence in favour of H0

Lower values of Λ are evidence against H0

Critical region: {x | Λ ≤ λ0} where 0 ≤ λ0 ≤ 1.
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Linear Models Likelihood Ratio Test (LRT)

log-LRT

Definition (log-Likelihood Ratio)

The log-likelihood ratio for testing H0 vs H1 is defined as

−2× log(Λ) = −2× log

[
L(θ̂0)

L(θ̂)

]
= 2

[
`(θ̂)− `(θ̂0)

]

Example
Full model yi = xi1β1 + xi2β2 + ei , which is solved by (β̂, σ̂2)

Sub-model yi = xi1β1 + ei , which is solved by (β̂0, σ̂
2
0),

Θ0 =
{
σ2,β : β2 = 0

}
, H0 : β ∈ Θ0 against H1 : β /∈ Θ0

`(β̂, σ̂2) = −n

2
log(2π)− n

2
log(σ̂2)− 1

2σ̂2

n∑
i=1

(
yi − xi1β̂1 − xi2β̂2

)2

`(β̂0, σ̂
2
0) = −n

2
log(2π)− n

2
log(σ̂2

0)− 1

2σ̂2
0

n∑
i=1

(
yi − xi1β̂01

)2

−2× log(Λ) = 2
[
`(β̂, σ̂2)− `(β̂0, σ̂

2
0)
]

22/34 F.Rohart STAT3306/7306 19/08/19 22 / 34



Linear Models Likelihood Ratio Test (LRT)

log-LRT

Definition (log-Likelihood Ratio)

The log-likelihood ratio for testing H0 vs H1 is defined as

−2× log(Λ) = −2× log

[
L(θ̂0)

L(θ̂)

]
= 2

[
`(θ̂)− `(θ̂0)

]
Example
Full model yi = xi1β1 + xi2β2 + ei , which is solved by (β̂, σ̂2)

Sub-model yi = xi1β1 + ei , which is solved by (β̂0, σ̂
2
0),

Θ0 =
{
σ2,β : β2 = 0

}
, H0 : β ∈ Θ0 against H1 : β /∈ Θ0

`(β̂, σ̂2) = −n

2
log(2π)− n

2
log(σ̂2)− 1

2σ̂2

n∑
i=1

(
yi − xi1β̂1 − xi2β̂2

)2

`(β̂0, σ̂
2
0) = −n

2
log(2π)− n

2
log(σ̂2

0)− 1

2σ̂2
0

n∑
i=1

(
yi − xi1β̂01

)2

−2× log(Λ) = 2
[
`(β̂, σ̂2)− `(β̂0, σ̂

2
0)
]

22/34 F.Rohart STAT3306/7306 19/08/19 22 / 34



Linear Models Likelihood Ratio Test (LRT)

log-LRT

Definition (log-Likelihood Ratio)

The log-likelihood ratio for testing H0 vs H1 is defined as

−2× log(Λ) = −2× log

[
L(θ̂0)

L(θ̂)

]
= 2

[
`(θ̂)− `(θ̂0)

]
Example
Full model yi = xi1β1 + xi2β2 + ei , which is solved by (β̂, σ̂2)

Sub-model yi = xi1β1 + ei , which is solved by (β̂0, σ̂
2
0),

Θ0 =

{
σ2,β : β2 = 0

}
, H0 : β ∈ Θ0 against H1 : β /∈ Θ0

`(β̂, σ̂2) = −n

2
log(2π)− n

2
log(σ̂2)− 1

2σ̂2

n∑
i=1

(
yi − xi1β̂1 − xi2β̂2

)2

`(β̂0, σ̂
2
0) = −n

2
log(2π)− n

2
log(σ̂2

0)− 1

2σ̂2
0

n∑
i=1

(
yi − xi1β̂01

)2

−2× log(Λ) = 2
[
`(β̂, σ̂2)− `(β̂0, σ̂

2
0)
]
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Linear Models Generalised Least Squares (GLS)

Generalised Least Squares

GLS

Residuals are heteroscedastic and/or dependent, e ∼ Nn(0,V ). The linear model
becomes

y = Xβ + e,Var(e) = σ2
eR

OLS: special case of GLS, where Var(e) = σ2
e I .

The GLS estimate is GLS(β) = (X>R−1X )−1R−1X>y
The variance-covariance of the estimated model parameters is given by

Var(β̂) = (X>R−1X )−1σ2
e

Exercise: how do you get the GLS estimate?

The trick is to pre-multiply y = Xβ + e by R−1/2:
R−1/2y = R−1/2Xβ + R−1/2e
z = Zβ + f with f ∼ N (0, Iσ2

e ), and then apply an OLS.
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Linear Models Generalised Least Squares (GLS)

Summary OLS vs GLS

OLS GLS
Assumed distribution of residuals e ∼ (0, σ2

e I ) e ∼ (0,V )

Least-squares estimator of β β̂ = (X>X )−1X>y β̂ = (X>V−1X )−1X>V−1y

Var(β̂) (X>X )−1σ2
e (X>V−1X )−1

Predicted values, ŷ = X β̂ X (X>X )−1X>y X (X>V−1X )−1X>V−1y

Var(ŷ) X (X>X )−1X>σ2
e X (X>V−1X )−1X>
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Linear Models High-Dimensional LM

Problems with High-Dimensional Linear Model

high-dimension, n < p

Same model as before
y = Xβ + e

where X n × p matrix, and p > n, or p >> n

Example

## sma l l h igh−d imen s i o n a l da ta s e t , 3 ∗ 6
> X

ENSG00000000003 ENSG00000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460 ENSG00000000938
sample1 0.8656802 0.2445878 0.9027015 0.3773931 0.3773931 0.008697272
sample2 0.8561306 0.1807828 0.8853417 0.4156058 0.4156058 0.098042092
sample3 0.8870595 0.1840356 0.8915388 0.4016337 0.4016337 0.082282120

X>X is not invertible.

> s o l v e ( t (X)%∗% X)
E r r o r i n s o l v e . d e f a u l t ( t (X) %∗% X) :

Lapack r o u t i n e dgesv : system i s e x a c t l y s i n g u l a r : U [ 5 , 5 ] = 0

We can estimate at most n parameters. Here we have more parameters (p = 6) to
estimate than observations (n = 3). We have lost identifiability: no unique β
(we can find several β solution to X>Xβ = X>y)

25/34 F.Rohart STAT3306/7306 19/08/19 25 / 34



Linear Models High-Dimensional LM

Solutions to High-Dimensional Linear Model

add a constraint to the optimisation problem - like Lasso (`1), Ridge (`2), Elastic net
(mixed `1 and `2).

Lasso (Tibshirani 1996)

β̂ = arg min
b∈Rp ,||b||1<λ

{||y − Xb||22},

where λ > 0 is the penalty or regularisation parameter, and control the amount of
shrinkage (and the number of non zero coefficients in b)

one parameter at a time

Marginal regression, y = Xjβj + e

For all j ∈ {1, 2, . . . , p}

β̂j = arg min
b∈R

{||y − Xjb||22} = (X>j Xj)
−1X>j y
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Linear Mixed Models

Outline

1 Linear Models
Simple Linear Regression
Multiple Linear Regression
Ordinary Least Squares (OLS)
Likelihood
Reminder Statistical Testing
Likelihood Ratio Test (LRT)
Generalised Least Squares (GLS)
High-Dimensional LM

2 Linear Mixed Models
Fixed effects vs random effects
Model Equation
Mixed Model Equations (MME) - Henderson
High-Dimensional LMM
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Linear Mixed Models Fixed effects vs random effects

Fixed effects vs random effects

Factor effects are either fixed or random.

Fixed: The levels in the study represent all levels of interest

Random: The levels in the study represent only a sample of the levels of interest.
Levels are considered to be drawn from an infinite population of levels.

What do you think?

Gender, year to year variation in rainfall at a location, school
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Linear Mixed Models Model Equation

We generally speak of estimating fixed factors (BLUE) and predicting random effects
(BLUP - Best linear unbiased Predictor).

Mixed models (MM)

Mixed models (MM) contain both fixed and random factors

y = Xβ + Zu + e

where

y vector of observed dependent values, with mean E(y) = Xβ

β vector of unknown parameters to estimate (fixed effects)

u vector of unknown random effects, with mean E(u) = 0 and variance-covariance
Var(u) = G
e vector of residuals, with mean E(e) = 0 and variance-covariance Var(e) = R
X and Z are design matrices
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Linear Mixed Models Model Equation

Example

Suppose we have 3 variables in a multiple regression, with four (y , x) vectors of
observations.

y = Xβ + Zu + e

where

y =


y1

y2

y3

y4

y5

 ,β =

µ
β1

β2

 ,X =


1 x11 x12

1 x21 x22

1 x31 x32

1 x41 x42

1 x51 x52

 ,Z =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

 ,

u =

u1

u2

u3

 , u ∼ N3(0, σ2
uI3)

e =


e1

e2

e3

e4

e5

 , e ∼ N5(0, σ2
e I3)

We estimate β and we predict u (we do not want the values u1, u2, u3 but we want σ2
u).
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Linear Mixed Models Model Equation

k effects, two possibilities:

treated as fixed effects: we lose k degrees of freedom.

treated as random effects from N (0, σ2): only one degree of freedom is lost
(estimating the variance) and we can then predict the values of the k realisations.
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Linear Mixed Models Mixed Model Equations (MME) - Henderson

MME

Mixed Model Equations (MME)(
X>R−1X X>R−1Z
Z>R−1X Z>R−1Z + G−1

)(
β̂
û

)
=

(
X>R−1y
Z>R−1y

)

The solutions to the MME are the best linear unbiased estimates (β̂, BLUE) and
predictors (û, BLUP) for β and u.

Usually solved by an EM algorithm (Expectation-Maximisation).

Note that β̂ is the GLS estimate from the marginal model: y = Xβ + e with
e ∼ Nn(0,V ) and V = ZGZ> + R
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Linear Mixed Models High-Dimensional LMM

Problems with High-Dimensional Linear Mixed Model

high-dimension, n < p

Same model as before
y = Xβ + Zu + e

where X n × p matrix, and p > n, or p � n

Solution to the problem,

add constraints to the optimisation problem

one parameter at a time
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Linear Mixed Models High-Dimensional LMM

Summary

Least Squares
β̂ = arg min

b∈Rp
{||y − Xb||22}

OLS GLS
Assumed distribution of residuals e ∼ (0, σ2

e I ) e ∼ (0,V )

Least-squares estimator of β β̂ = (X>X )−1X>y β̂ = (X>V−1X )−1X>V−1y
Var(β̂) (X>X )−1σ2

e (X>V−1X )−1

Likelihood ratio test

Λ =
L(θ̂0)

L(θ̂)

Fixed vs Random effects
I Fixed: The levels in the study represent all levels of interest, e.g. gender
I Random: The levels are considered to be drawn from an infinite population of levels,

e.g. a batch
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