

#### Estimation of Heritability in Humans

Jian Yang Queensland Brain Institute jian.yang@uq.edu.au



• Genetics

• Statistics: correlation, ANOVA

• Tools: R, Excel

### • • Heritability

- Proportion of phenotypic variation that is due to genetic factors (e.g. genes / genetic variants)
- Specific to a population
  - Allele frequencies
  - Effects of gentic variants
  - Environmental factors



 A trait is heritable if more closely related individuals have more similar phenotypes

• The stronger the relationship between relatedness and phenotypic similarity, the more heritable the trait is.

#### Estimating heritability

The simplest genetic model: Y = G + E

- Y = phenotype
- G = genetic value
- E = residual

 $H^2 = var(G) / var(Y)$ 

#### Heritability Estimation

 Aim to disentangle genetic and environmental influences on trait variation

- Resemblance between relatives
  - Shared genes
  - Shared environmental factors
- Differences between relatives
  - Non-shared genes
  - Unique environmental factors



$$Y_{j1} = G + E_{j1}$$
  
 $Y_{j2} = G + E_{j2}$ 

Assuming  $E_{j1}$  and  $E_{j2}$  are independent Cov( $Y_{j1}$ ,  $Y_{j2}$ ) = cov(G +  $E_{j1}$ , G +  $E_{j2}$ ) = var(G)

Cor
$$(Y_{j1}, Y_{j2}) = Cov(Y_{j1}, Y_{j2}) / [\sigma(Y_{j1}) \sigma(Y_{j2})]$$
  
= var $(G) / var(Y)$   
= H<sup>2</sup>

### • • Twin Design

- o A "natural experiment"
  - Gets around inability to use breeding experiments in humans!
- Relatively high frequency
  - ~1 in 80 births in Australia are twins
  - Ratio of MZ/DZ ~1:2 in Caucasians

## • • • MZ twins: $E_{j1}$ and $E_{j2}$ are dependent

$$Y_{j1} = G + E_{j1}$$
  
 $Y_{j2} = G + E_{j2}$ 

If 
$$E_{j1}$$
 and  $E_{j2}$  are dependent  
 $Cov(Y_{j1}, Y_{j2}) = cov(G + E_{j1}, G + E_{j2})$   
 $= var(G) + cov(E_{j1}, E_{j2})$   
 $> var(G)$ 

H<sup>2</sup> overestimated!

## A more complicated but realistic model



Falconer & Mackay, Chapters 7 & 8



$$Cov(y_{i1}, y_{i2}|MZ) = Cov(MZ)$$

$$= V_G + V_{Ec(MZ)}$$

$$= V_{A} + V_{D} + V_{I} + V_{Ec(MZ)}$$



#### $Cov(y_{i1}, y_{i2}|DZ) = Cov(DZ)$

$$= \frac{1}{2} V_{A} + \frac{1}{4} V_{D} + \frac{1}{4} V_{AA} + \dots + V_{Ec(DZ)}$$

Falconer & Mackay, Chapters 9

### • Example: Correlations

|     | Intelligence (IQ) |
|-----|-------------------|
| rMZ | 0.81              |
| rDZ | 0.51              |

$$Cov(y_{i1}, y_{i2}|MZ) = V_A + V_D + V_I + V_{Ec(MZ)}$$

$$Cov(y_{i1}, y_{i2}|DZ) = \frac{1}{2} V_A + \frac{1}{4} V_D + \frac{1}{4} V_{AA} + \dots + V_{Ec(DZ)}$$

Luciano et al (2001) Intelligence 29:443

## Analysing Twin Data

Correlation
One-way ANOVA
(Maximum likelihood, structural equation modelling...)



- $\rho_{MZ} = cov(MZ) / (\sigma_{v1} \sigma_{v2})$ 
  - $h^2 + c^2 + ...$ =
- $cov(DZ) / (\sigma_{v1} \sigma_{v2})$ =  $\rho_{DZ}$ 
  - $\frac{1}{2}h^2 + c^2 + ...$ =
- $\sigma_{v}^{2} = \sigma_{v1}^{2} = \sigma_{v2}^{2}$ Note:

## ANOVA Overview

- Two separate ANOVAs for MZ and DZ twin pairs
  - Between-pairs and within-pairs components of variance
  - Assumes that trait has same variance in MZ and DZ twins

### • • Linear Model

$$y_{ij} = \mu + b_i + w_{ij}$$
  
$$\sigma_y^2 = \sigma_b^2 + \sigma_w^2$$

• Balanced: j=1,2 for all groups

• y, b and w are random variables

• 
$$H^2 = \sigma_b^2 / \sigma_y^2$$

- Intra-Class Correlation = proportion of total variance attributable to differences between pairs
- Very similar to direct correlation estimate...  $\sigma_b^{2} = \sigma_G^2$



| Source        | d.f.   | MS | E(MS)                         |
|---------------|--------|----|-------------------------------|
| Between pairs | n-1    | В  | $\sigma_w^2$ + 2 $\sigma_b^2$ |
| Within pairs  | n(2-1) | W  | $\sigma_w^2$                  |

$$V_w = \sigma^2_w = E(MS)_W$$

$$V_{b} = \sigma_{b}^{2} = [E(MS)_{B} - E(MS)_{W}] / 2$$

## • • Why Use ANOVA

• Ordering of pairs does not matter

Can correct for other variables
Age
Sex

• Can test (some) assumptions

## Assumption Testing

#### • Test of equality of variances $F = MST_{MZ}$ $MST_{DZ}$ with $(2n_{MZ}-1, 2n_{DZ}-1)$ d.f.

• Test of genetic contribution to trait  $F = \frac{MSW_{DZ}}{MSW_{MZ}}$ with  $(n_{DZ}, n_{MZ})$  d.f. [n = # pairs]

### Components of ANOVA

 $V_b$  (Between pairs) $V_w$  (Within pairs)MZ $V_A + V_{Ec(MZ)}$  $V_{Es(MZ)}$ DZ $\frac{1}{2}V_A + V_{Ec(DZ)}$  $\frac{1}{2}V_A + V_{Es(DZ)}$ 

Assumption #1: We ignore the contribution of non-additive genetic variation

#### BUT!

Still too many unknowns (5) to be estimated from only 4 summary statistics

## More Assumptions...

• Assume that environmental variances are equal for MZ and DZ:  $V_{Ec(MZ)} = V_{Ec(DZ)}$   $V_{Es(MZ)} = V_{Es(DZ)}$ 

 $V_b$  (Between pairs) $V_w$  (Within pairs)MZ $V_A + V_{Ec}$  $V_{es}$ DZ $\frac{1}{2}V_A + V_{Ec}$  $\frac{1}{2}V_A + V_{es}$ 

## Variance components estimates

• 
$$V_A = 2 (V_{b(MZ)} - V_{b(DZ)})$$
  
= 2 [( $V_A + V_{Ec}$ ) - ( $\frac{1}{2}V_A + V_{Ec}$ )]  
=  $V_A$ 

• 
$$V_{ec} = 2 V_{b(DZ)} - V_{b(MZ)}$$
  
=  $[2 (\frac{1}{2}V_A + V_{Ec})] - (V_A + V_{ec})$ 

#### The equal environments assumption

 We assume that environmental factors causing twin similarity operate at same level in MZ and DZ twins

• If MZ twins experience more similar environment than DZ twins, this will inflate  $\hat{h}^2$ 

#### Summary of assumptions

- Total variance of the trait same for both types of twins
  - Var(MZ) = Var(DZ)
- Influence of non-additive genetic variation (dominance and epistasis) can be ignored
- Environmental sources of variance are the same in MZs and DZs

• 
$$V_{Ec(MZ)} = V_{Ec(DZ)} \& V_{Es(MZ)} = V_{Es(DZ)}$$

#### Are twins representative?

- Assume twins are representative of the general population but possible that
  - Not genetically representative
    - Risk of congenital malformations
  - Not environmentally representative
    - Parental treatment
    - Sibling co-operation or competition
- Volunteer twin registries generally used so may not be representative of non-volunteers
  - May be especially problematic for some behavioural traits

## Different study designs

Family studies

- Gene + environment confounded
- Focus on relative pairs or all individuals
- MZ twins reared apart / Adoptions
  - Could remove environmental confounding
  - Atypical, possible selective placement

### Relative Pair Correlations

#### • Assuming similarity is only due to additive effects....

| Pair Type                  | Correlation              |
|----------------------------|--------------------------|
| MZ                         | h <sup>2</sup>           |
| DZ                         | 1⁄2 h <sup>2</sup>       |
| Parent – Offspring         | 1⁄2 h <sup>2</sup>       |
| Mid-Parent – Offspring     | sqrt(1/2) h <sup>2</sup> |
| Sib Pair                   | 1⁄2 h <sup>2</sup>       |
| Half Sibs                  | 1⁄4 h <sup>2</sup>       |
| Grandparent - Grandchild   | 1⁄4 h <sup>2</sup>       |
| Avuncular (Uncle - Nephew) | 1⁄4 h <sup>2</sup>       |



#### • Morphological Measures

- Fingerprint Ridges ~90%
- Height ~80%
- Baldness ~80%
- BMI ~65%
- Facial Traits ~50%
- Birth Weight
- ~30%



#### Diseases

- Schizophrenia ~80%
- Type I Diabetes
- Macular Degeneration ~60%

~80%

~45%

- Lupus ~50%
- Coronary Heart Disease
- Type II Diabetes ~25%



10 min break

#### Practical 2pm to 4:50pm, 83-C310

http://ctgg.qbi.uq.edu.au/teaching/ UQQG/

## Using Variation Within Pairs

 For some relationship pairs, there is variation in the amount of the genome shared

Parent-offspring – always 50% sharing (ignoring inbreeding...)
Sib-pairs – average of 50% sharing
1⁄4 IBD 2, 1⁄2 IBD 1, 1⁄4 IBD 0





#### Identity By Descent – IBD

 Related individuals share the same allele or haplotype



• Simple case: IBD = 0



• More simple cases: IBD = 2



#### • Not so simple: 50% IBD 1, 50% IBD 2



• Complex case: IBD = ???



#### Estimating Relatedness

• Genotype a large number of markers across the genome

 Calculate IBD probabilities across the genome and take the average

Genetic relatedness = P(IBD=2) + <sup>1</sup>/<sub>2</sub>
 P(IBD = 1)

#### Relatedness of Sib-Pairs



Assumption-Free Estimation of Heritability from Genome-Wide Identity-by-Descent Sharing between Full Siblings Visscher et al., PLoS Genet (2006) 2: e41

## Heritability Within-Pairs

 Tests if more related people are more phenotypically similar

 Can use variation in relatedness within (e.g.) sib-pairs to estimate heritability

## Example - Height

| Data                  | Model | Estimates (95% CI) |                  | LRT*   | p-Value <sup>b</sup> |
|-----------------------|-------|--------------------|------------------|--------|----------------------|
|                       |       | f²                 | h²               |        |                      |
| Adolescents (n = 931) | FAE   | 0.00 (0.00-0.43)   | 0.80 (0.00-0.90) |        |                      |
|                       | FE    | 0.40 (0.34-0.45)   |                  | 1.850  | 0.0869               |
| Adults (n = 2,444 )   | FAE   | 0.00 (0.00-0.18)   | 0.80 (0.43-0.86) |        |                      |
|                       | FE    | 0.39 (0.36-0.43)   |                  | 9.817  | 0.0009               |
| Combined (n = 3,375)  | FAE   | 0.00 (0.00-0.17)   | 0.80 (0.46-0.85) |        |                      |
|                       | FE    | 0.39 (0.36-0.42)   |                  | 11.553 | 0.0003               |

\*Likelihood ratio test statistic for the null hypothesis that h<sup>2</sup> = 0, calculated from the difference in log-likelihood between models FAE and FE.

<sup>b</sup>p-Value calculated assuming that the LRT is distributed as zero with a probability of ½ and  $\chi_{c1}^2$  with a probability of ½.

LRT, likelihood ratio test.

DOI: 10.1371/journal.pgen.0020041.t002

Assumption-Free Estimation of Heritability from Genome-Wide Identity-by-Descent Sharing between Full Siblings Visscher et al., PLoS Genet (2006) 2: e41

## Heritability Within Pairs

Advantage

 Using differences within a family means no assumptions are made about variation across families

Disadvantage

- Estimate has large variance
- Requires very large numbers of pairs

## Population Based Estimation

 "Unrelated" individuals from the population show differing amounts of genetic similarity.

• We can use these differences to estimate a "heritability".

• Need to measure how related "unrelated" people are.

#### Genome-wide SNP Chips



## Genome-wide SNP Chip

• Measure an individuals genotype at 100s of thousands / millions of SNP

• SNP = Single Nucleotide Polymorphism

• Look at "common" variation

Minor allele frequency > 0.05 (0.01)

## Measuring Relatedness

• Look at similarity of genotypes

• IBS - Identity-by-state

 How similar depends on population allele frequencies

#### Calculating Relatedness

 Can calculate a measure of relatedness at a SNP using IBS and allele frequency

Average across all SNPs genotyped

#### "Unrelated" People



Common SNPs explain a large proportion of the heritability for human height Yang et al., Nature Genetics (2010) 42, 565–569

### Estimating "Heritability"

• Simple regression

- Squared difference of trait (standardised)
- Genetic relationship

• Intercept =  $2 * V_P$ • Slope =  $-2 * V_A$ 

## Example - Height

• From the Yang et al.: • Slope = 1.98, Intercept = -1.01 •  $\rightarrow V_P = 0.990$ •  $\rightarrow V_A = 0.505$ 

• 
$$h^2 = V_A / V_P = 0.51$$

# Not really a heritability...

• Variance explained by the SNPs

 ~300,000 SNPs does not capture all variation in the genome

o In particular, rare variation is missed

### Further Dissecting

 We can subset the SNPs to ask further questions about the genetic make-up of the trait

- o E.g.
  - Do chromosomes contribute equally?
  - Do gene regions contribute more than intergenic regions?

Genome partitioning of genetic variation for complex traits using common SNPs Yang et al., Nature Genetics (2011) 43, 519–525

#### Variance by Chromosome



## Genic vs Intergenic Regions

• "Genic" region defined as being from the 5' to the 3' end of a gene +20KB

• Covers 49.4% of the genome

 If random, expect genic region to explain ~50% of variation

#### Genic vs Intergenic Regions



Genic = 0.328 (72%), Intergenic = 0.126



 A trait is heritable if more closely related individuals have more similar phenotypes

• The stronger the relationship between relatedness and phenotypic similarity, the more heritable the trait is.