Estimation of Heritability in Humans

Jian Yang
Queensland Brain Institute jian.yang@uq.edu.au

Lecture 11am to 12:50pm, 83-C415

- Genetics
- Statistics: correlation, ANOVA
- Tools: R, Excel

Heritability

- Proportion of phenotypic variation that is due to genetic factors (e.g. genes / genetic variants)
- Specific to a population
- Allele frequencies
- Effects of gentic variants
- Environmental factors

Heritability

- A trait is heritable if more closely related individuals have more similar phenotypes
- The stronger the relationship between relatedness and phenotypic similarity, the more heritable the trait is.

Estimating heritability

The simplest genetic model:
$Y=G+E$
$\mathrm{Y}=$ phenotype
G = genetic value
$\mathrm{E}=$ residual
$\mathrm{H}^{2}=\operatorname{var}(\mathrm{G}) / \operatorname{var}(\mathrm{Y})$

Heritability Estimation

- Aim to disentangle genetic and environmental influences on trait variation
- Resemblance between relatives
- Shared genes
- Shared environmental factors
- Differences between relatives
- Non-shared genes
- Unique environmental factors

Clones

$$
\begin{aligned}
& Y_{j 1}=G+E_{j 1} \\
& Y_{j 2}=G+E_{j 2}
\end{aligned}
$$

Assuming $\mathrm{E}_{\mathrm{j} 1}$ and $\mathrm{E}_{\mathrm{j} 2}$ are independent

$$
\operatorname{Cov}\left(Y_{j 1}, Y_{j 2}\right)=\operatorname{cov}\left(G+E_{j 1}, G+E_{j 2}\right)=\operatorname{var}(G)
$$

$$
\begin{aligned}
\operatorname{Cor}\left(\mathrm{Y}_{\mathrm{j} 1}, \mathrm{Y}_{\mathrm{j} 2}\right) & =\operatorname{Cov}\left(\mathrm{Y}_{\mathrm{j} 1}, \mathrm{Y}_{\mathrm{j} 2}\right) /\left[\sigma\left(\mathrm{Y}_{\mathrm{j} 1}\right) \sigma\left(\mathrm{Y}_{\mathrm{j} 2}\right)\right] \\
& =\operatorname{var}(\mathrm{G}) / \operatorname{var}(\mathrm{Y}) \\
& =\mathrm{H}^{2}
\end{aligned}
$$

Twin Design

- A "natural experiment"
- Gets around inability to use breeding experiments in humans!
- Relatively high frequency
- ~1 in 80 births in Australia are twins
- Ratio of MZ/DZ ~1:2 in Caucasians
$M Z$ twins: $\mathrm{E}_{\mathrm{j} 1}$ and $\mathrm{E}_{\mathrm{j} 2}$ are dependent

$$
\begin{aligned}
& Y_{j 1}=G+E_{j 1} \\
& Y_{j 2}=G+E_{j 2}
\end{aligned}
$$

If $E_{j 1}$ and $E_{j 2}$ are dependent

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{j 1}, Y_{j 2}\right) & =\operatorname{cov}\left(G+E_{j 1}, G+E_{j 2}\right) \\
& =\operatorname{var}(G)+\operatorname{cov}\left(E_{j 1}, E_{j 2}\right) \\
& >\operatorname{var}(G)
\end{aligned}
$$

H^{2} overestimated!

A more complicated but realistic model

$$
\begin{aligned}
\mathrm{y} & =\mu+\mathrm{G}+\mathrm{E} \\
& =\mu+(\mathrm{A}+\mathrm{D}+\mathrm{I})+\mathrm{E}_{\mathrm{c}}+\mathrm{E}_{\mathrm{s}} \\
\operatorname{var}(\mathrm{y}) & =\mathrm{V}_{\mathrm{G}}+\mathrm{V}_{\mathrm{E}} \\
& =\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{D}}+\mathrm{V}_{1}+\mathrm{V}_{\mathrm{EC}}+\mathrm{V}_{\mathrm{Es}}
\end{aligned}
$$

Falconer \& Mackay, Chapters 7 \& 8

MZ covariance

$\operatorname{Cov}\left(\mathrm{y}_{\mathrm{i}_{1}}, \mathrm{y}_{\mathrm{i}} \mid \mathrm{MZ}\right)=\operatorname{Cov}(\mathrm{MZ})$

$$
\begin{aligned}
& =V_{G}+V_{E c(M Z)} \\
& =V_{A}+V_{D}+V_{1}+V_{E c(M Z)}
\end{aligned}
$$

DZ covariance

$\operatorname{Cov}\left(\mathrm{y}_{\mathrm{i} 1}, \mathrm{y}_{\mathrm{i} 2} \mid \mathrm{DZ}\right)=\operatorname{Cov}(\mathrm{DZ})$

$$
\begin{aligned}
= & 1 / 2 \mathrm{~V}_{\mathrm{A}}+1 / 4 \mathrm{~V}_{\mathrm{D}}+1 / 4 \mathrm{~V}_{\mathrm{AA}}+\ldots \\
& +\mathrm{V}_{\mathrm{Ec}(\mathrm{DZ})}
\end{aligned}
$$

Example: Correlations

Luciano et al (2001) Intelligence 29:443

Analysing Twin Data

- Correlation
- One-way ANOVA
- (Maximum likelihood, structural equation modelling...)

Correlation

$$
\begin{aligned}
\rho_{\mathrm{MZ}} & = \\
& =\operatorname{cov}(\mathrm{MZ}) /\left(\sigma_{\mathrm{y} 1} \sigma_{\mathrm{y} 2}\right) \\
& h^{2}+\mathrm{c}^{2}+\ldots \\
\rho_{\mathrm{DZ}} & = \\
& =\operatorname{cov}(\mathrm{DZ}) /\left(\sigma_{\mathrm{y} 1} \sigma_{\mathrm{y} 2}\right) \\
& =1 / 2 h^{2}+c^{2}+\ldots
\end{aligned}
$$

Note: $\quad \sigma^{2}{ }_{y}=\sigma^{2}{ }_{y 1}=\sigma^{2}{ }_{y 2}$

ANOVA Overview

- Two separate ANOVAs for MZ and DZ twin pairs
- Between-pairs and within-pairs components of variance
- Assumes that trait has same variance in MZ and DZ twins

Linear Model

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{ij}}=\mu+\mathrm{b}_{\mathrm{i}} \quad+\quad \mathrm{w}_{\mathrm{ij}} \\
& \sigma_{\mathrm{y}}^{2}=\sigma_{\mathrm{b}}^{2}+\sigma_{\mathrm{w}}^{2}
\end{aligned}
$$

o Balanced: j=1,2 for all groups

- y, b and w are random variables
- $\mathrm{H}^{2}=\sigma_{\mathrm{b}}{ }^{2} / \sigma_{\mathrm{y}}{ }^{2}$
- Intra-Class Correlation = proportion of total variance attributable to differences between pairs
- Very similar to direct correlation estimate...
$\sigma_{b}{ }^{2}=\sigma_{G}{ }^{2}$

ANOVA table

Source	d.f.	$M S$	$E(M S)$
Between pairs	$n-1$	B	$\sigma_{w}^{2}+2 \sigma_{b}^{2}$
Within pairs	$n(2-1)$	W	$\sigma_{w}{ }^{2}$
$V_{w}=\sigma_{w}^{2}=E(M S)_{w}$			
$V_{b}=\sigma_{b}=\left[E(M S)_{B}-E(M S)_{w}\right] / 2$			

Why Use ANOVA

- Ordering of pairs does not matter
- Can correct for other variables
- Age
- Sex
- Can test (some) assumptions

Assumption Testing

- Test of equality of variances

$$
\begin{aligned}
\mathrm{F}= & \frac{\mathrm{MST}_{\mathrm{MZ}}}{\mathrm{MST}_{\mathrm{DZ}}} \\
& \text { with }\left(2 n_{\mathrm{Mz}}-1,2 n_{\mathrm{DZ}}-1\right) \text { d.f. }
\end{aligned}
$$

- Test of genetic contribution to trait $\mathrm{F}=\frac{\mathrm{MSW}_{\mathrm{DZ}}}{\mathrm{MSW}}$ with $\left(n_{\mathrm{DZ}}, n_{\mathrm{MZ}}\right)$ d.f. $\quad[n=\#$ pairs]

Components of ANOVA

V_{b} (Between pairs) $\quad \mathrm{V}_{\mathrm{w}}$ (Within pairs)
$M Z \quad V_{A}+V_{E c(M Z)}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{Es}(\mathrm{Mz})} \\
& 1 / 2 \mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{Es}(\mathrm{DZ})}
\end{aligned}
$$

$D Z \quad 1 / 2 \mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{Ec}(\mathrm{DZ})}$
Assumption \#1:
We ignore the contribution of non-additive genetic variation

BUT!
Still too many unknowns (5) to be estimated from only 4 summary statistics

More Assumptions...

- Assume that environmental variances are equal for MZ and DZ:
$V_{E c(M Z)}=V_{E c(D Z)}$
$V_{E s(M Z)}=V_{E s(D Z)}$
V_{b} (Between pairs)
V_{w} (Within pairs)
$M Z \quad V_{A}+V_{E c}$
$V_{\text {es }}$
DZ $\quad 1 / 2 V_{A}+V_{E c}$
$1 / 2 V_{A}+V_{\text {es }}$

Variance components estimates

$$
\begin{aligned}
\circ \mathrm{V}_{\mathrm{A}} & =2\left(\mathrm{~V}_{\mathrm{b}(\mathrm{MZ)}}-\mathrm{V}_{\mathrm{b}(\mathrm{DZ})}\right) \\
& =2\left[\left(\mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{Ec}}\right)-\left(1 / 2 \mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{Ec}}\right)\right] \\
& =\mathrm{V}_{\mathrm{A}} \\
\circ \mathrm{~V}_{\mathrm{ec}} & =2 \mathrm{~V}_{\mathrm{b}(\mathrm{DZ})}-\mathrm{V}_{\mathrm{b}(\mathrm{MZ})} \\
& =\left[2\left(1 / 2 \mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{Ec}}\right)\right]-\left(\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{ec}}\right)
\end{aligned}
$$

The equal environments assumption

- We assume that environmental factors causing twin similarity operate at same level in MZ and DZ twins
- If MZ twins experience more similar environment than DZ twins, this will inflate $\hat{\mathrm{h}}^{2}$

Summary of assumptions

- Total variance of the trait same for both types of twins
- $\operatorname{Var}(\mathrm{MZ})=\operatorname{Var}(\mathrm{DZ})$
- Influence of non-additive genetic variation (dominance and epistasis) can be ignored
- Environmental sources of variance are the same in MZs and DZs
- $\mathrm{V}_{\mathrm{Ec}(\mathrm{MZ})}=\mathrm{V}_{\mathrm{Ec}(\mathrm{DZ})} \& \mathrm{~V}_{\mathrm{Es}(\mathrm{Mz})}=\mathrm{V}_{\mathrm{Es}(\mathrm{Dz})}$

Are twins representative?

- Assume twins are representative of the general population but possible that

Not genetically representative

- Risk of congenital malformations
- Not environmentally representative
- Parental treatment
- Sibling co-operation or competition
- Volunteer twin registries generally used so may not be representative of non-volunteers
- May be especially problematic for some behavioural traits

Different study designs

- Family studies
- Gene + environment confounded
- Focus on relative pairs or all individuals
- MZ twins reared apart / Adoptions
- Could remove environmental confounding
- Atypical, possible selective placement

Relative Pair Correlations

o Assuming similarity is only due to additive effects....

Pair Type	Correlation
MZ	h^{2}
DZ	$1 / 2 h^{2}$
Parent - Offspring	$1 / 2 h^{2}$
Mid-Parent - Offspring	sqrt(1/2) h^{2}
Sib Pair	$1 / 2 h^{2}$
Half Sibs	$1 / 4 h^{2}$
Grandparent - Grandchild	$1 / 4 h^{2}$
Avuncular (Uncle - Nephew)	$1 / 4 h^{2}$

Examples

- Morphological Measures
- Fingerprint Ridges
- Height
- Baldness
- BMI
- Facial Traits
- Birth Weight
~90\%
~80\%
~80\%
~65\%
~50\%
~30\%

Examples

- Diseases
- Schizophrenia
- Type I Diabetes
- Macular Degeneration
- Lupus
- Coronary Heart Disease
~80\%
~80\%
~60\%
~50\%
- Type II Diabetes
~45\%
~25\%

10 min break

Practical 2pm to 4:50pm, 83-C310

http://ctgg.qbi.uq.edu.au/teaching/ UQQG/

Using Variation Within Pairs

- For some relationship pairs, there is variation in the amount of the genome shared
- Parent-offspring - always 50\% sharing (ignoring inbreeding...)
- Sib-pairs - average of 50% sharing
- 1/4 IBD 2, ½ IBD 1, 1/4 IBD 0

Chromosome Transmission

- Identity By Descent - IBD
- Related individuals share the same allele or haplotype

\bullet •
 IBD - Identity By Descent

Sib 1

Sib 2

$4 / 16=1 / 4$ sibs share BOTH parental alleles IBD $=2$
$8 / 16=1 / 2$ sibs share ONE parental allele IBD = 1
$4 / 16=1 / 4$ sibs share NO parental alleles IBD $=0$

IBD - Identity By Descent

- Simple case: IBD $=0$

IBD - Identity By Descent

- More simple cases: IBD = 2

IBD - Identity By Descent

- Not so simple: 50\% IBD 1, 50\% IBD 2

IBD - Identity By Descent

- Complex case: IBD = ???

Estimating Relatedness

- Genotype a large number of markers across the genome
- Calculate IBD probabilities across the genome and take the average
- Genetic relatedness $=P(I B D=2)+1 / 2$ $P(I B D=1)$

Relatedness of Sib-Pairs

Assumption-Free Estimation of Heritability from Genome-Wide Identity-by-Descent Sharing between Full Siblings Visscher et al., PLoS Genet (2006) 2: e41

Heritability Within-Pairs

- Tests if more related people are more phenotypically similar
- Can use variation in relatedness within (e.g.) sib-pairs to estimate heritability

Example - Height

| Data | Model | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

${ }^{*}$ Ukelihood ratio test statistic for the null typothesis that $h^{2}=0$, calculated from the difference in log-likelihood between models FAE and PE.
${ }^{\mathrm{b}} \mathrm{p}$-Value calculated assuming that the LRT is distributed as zero with a probability of $1 / 2$ and $\mathrm{Z}_{\mathrm{N}}{ }^{2}$ with a probability of $/ 2$.
LRT, Hkelhood ratio test.
DOt 10.1371/journalpgen.0020041a002

Assumption-Free Estimation of Heritability from Genome-Wide Identity-by-Descent Sharing between Full Siblings Visscher et al., PLoS Genet (2006) 2: e41

Heritability Within Pairs

- Advantage
- Using differences within a family means no assumptions are made about variation across families
- Disadvantage
- Estimate has large variance
- Requires very large numbers of pairs

Population Based Estimation

- "Unrelated" individuals from the population show differing amounts of genetic similarity.
- We can use these differences to estimate a "heritability".
- Need to measure how related "unrelated" people are.

\bullet
 Genome-wide SNP Chips

Genome-wide SNP Chip

- Measure an individuals genotype at 100s of thousands / millions of SNP
- SNP = Single Nucleotide Polymorphism
- Look at "common" variation
- Minor allele frequency >0.05 (0.01)

Measuring Relatedness

o Look at similarity of genotypes

- IBS - Identity-by-state
- How similar depends on population allele frequencies

Calculating Relatedness

- Can calculate a measure of relatedness at a SNP using IBS and allele frequency
- Average across all SNPs genotyped

"Unrelated" People

Common SNPs explain a large proportion of the heritability for human height Yang et al., Nature Genetics (2010) 42, 565-569

Estimating "Heritability"

- Simple regression
- Squared difference of trait (standardised)
- Genetic relationship
- Intercept $=2$ * V_{P}
- Slope $=-2{ }^{*} V_{A}$

Example - Height

- From the Yang et al.:
- Slope $=1.98$, Intercept $=-1.01$
$\rightarrow \mathrm{V}_{\mathrm{P}}=0.990$
$\rightarrow \mathrm{V}_{\mathrm{A}}=0.505$
- $h^{2}=V_{A} / V_{P}=0.51$

Not really a heritability...

- Variance explained by the SNPs
o $\sim 300,000$ SNPs does not capture all variation in the genome
- In particular, rare variation is missed

Further Dissecting

- We can subset the SNPs to ask further questions about the genetic make-up of the trait
- E.g.
- Do chromosomes contribute equally?
- Do gene regions contribute more than intergenic regions?

Genome partitioning of genetic variation for complex traits using common SNPs
Yang et al., Nature Genetics (2011) 43, 519-525

Variance by Chromosome

Genic vs Intergenic Regions

- "Genic" region defined as being from the 5 ' to the 3 ' end of a gene +20 KB
- Covers 49.4\% of the genome
- If random, expect genic region to explain $\sim 50 \%$ of variation

Genic vs Intergenic Regions

Genic $=0.328(72 \%)$, Intergenic $=0.126$

Heritability

- A trait is heritable if more closely related individuals have more similar phenotypes
- The stronger the relationship between relatedness and phenotypic similarity, the more heritable the trait is.

