Overview

The **gsmr** R-package implements the GSMR (Generalised Summary-data-based Mendelian Randomisation) method to test for putative causal association between a risk factor and a disease using summary-level data from genome-wide association studies (GWAS) (Zhu et al. 2018 Nat. Commun.). The R package is developed by Zhihong Zhu, Zhili Zheng, Futao Zhang and Jian Yang at Institute for Molecular Bioscience, the University of Queensland. Bug reports or questions: jian.yang@uq.edu.au.

Note: The GSMR method has also been implemented in the GCTA software (GCTA-GSMR)

Citation

Source code

gsmr_1.0.8.tar.gz

Note: We included a new HEIDI-outlier method (as part of the GSMR analysis) in gsmr v1.0.7. However, the new HEIDI-outlier method is currently under development and subject to changes during the method development. From the current version of GSMR R package (>= version 1.0.8), we changed the default back to the original HEIDI-outlier method described in Zhu et al. (2018 Nature Communications) and added a temporary flag ('gsmr_beta') to test the new method. The command to use this flag can be found in the tutorial below. The new HEIDI-outlier method in gsmr v1.0.8 has been tested by extensive simulations and real data analyses. We will make a formal release in our next GSMR paper.

Sample data are available in test_data.zip. This document has been integrated in the gsmr R-package, we can check it by the standard command "? function_name" in R.

Installation

The **gsmr** requires R >= 2.15, you can install it in R by:

```r
# gsmr requires the R-package(s)
install.packages(c('survey'))
# install gsmr
install.packages("http://cnsgenomics.com/software/gsmr/static/gsmr_1.0.8.tar.gz",repos=NULL,type="source")
```

Update log

V1.0.8 (gsmr_1.0.8.tar.gz PDF, 21 Jan. 2019): Added a flag 'gsmr_beta' to use a testing version of the HEIDI-outlier method.

V1.0.7 (gsmr_1.0.7.tar.gz PDF, 9 Oct. 2018): Added a multi-SNP-based HEIDI-outlier test in the HEIDI-outlier analysis.

V1.0.6 (gsmr_1.0.6.tar.gz PDF, 23 Jan. 2018): Added a function to remove SNPs in high LD.

V1.0.5 (gsmr_1.0.5.tar.gz PDF, 13 Dec. 2017): Improved the approximation of the sampling covariance matrix.

V1.0.4 (gsmr_1.0.4.tar.gz PDF, 6 Nov. 2017): Added the bi-directional GSMR analysis. The HEIDI-outlier analysis has been integrated in the GSMR analysis by default.

V1.0.3 (gsmr_1.0.3.tar.gz PDF, 12 Oct. 2017): Added more example data.

Removed the initial versions (8 Nov 2016).

Tutorial

The GSMR analysis only requires summary-level data from GWAS. Here is an example, where the risk factor (x) is LDL cholesterol (LDL-c) and the disease (y) is coronary artery disease (CAD). GWAS summary data for both LDL-c and CAD are available in the public domain (Global Lipids Genetics Consortium et al. 2013, Nature Genetics; Nikpay, M. et al. 2015, Nature Genetics).

1. Prepare data for GSMR analysis

1.1 Load the GWAS summary data
library("gsmr")
data("gsmr")
head(gsmr_data)

##
SNP a1 a2 a1_freq bzx bzx_se bzx_pval bzx_n bzy
1 rs10983129 A G 0.45001947 -0.0328 0.0037 3.030e-17 169920.0 0.008038
2 rs12748152 T C 0.08087758 0.0499 0.0066 3.209e-12 172987.5 0.013671
3 rs11206508 A G 0.18395430 0.0687 0.0049 8.867e-41 172941.9 0.038267
4 rs11206510 C T 0.19128911 -0.0831 0.0050 2.380e-53 172812.0 -0.074519
5 rs10788994 G C 0.19713099 -0.0553 0.0052 8.746e-24 161969.0 0.001707
% bzy_se % bzy_pval % bzy_n
1 0.0092442 0.3845651000 184305
2 0.0185515 0.4611690000 184305
3 0.0141781 0.0330400000 184305
4 0.0133438 0.0000000234 184305
5 0.0118752 0.0012711000 184305
6 0.0135491 0.8997431000 184305

dim(gsmr_data)

[1] 188 12

This is the input format for the GSMR analysis. In this data set, there are 188 near-independent SNPs associated with LDL-c at a genome-wide significance level (i.e. p < 5e-8).

- **SNP**: the genetic instrument
- **a1**: effect allele
- **a2**: the other allele
- **a1_freq**: frequency of a1
- **bzx**: the effect size of a1 on risk factor
- **bzx_se**: standard error of bzx
- **bzx_pval**: p value for bzx
- **bzx_n**: per-SNP sample size of GWAS for the risk factor
- **bzy**: the effect size of a1 on disease
- **bzy_se**: standard error of bzy
- **bzy_pval**: p value for bzy
- **bzy_n**: per-SNP sample size of GWAS for the disease

1.2 Estimate the LD correlation matrix

```r
# Save the genetic variants and effect alleles in a text file using R
write.table(gsmr_data[,c(1,2)], "gsmr_example_snps.allele", col.names=F, row.names=F, quote=F)
gcta64 --bfile gsmr_example --extract gsmr_example_snps.allele --update-ref-allele gsmr_example_snps.allele --recode --out gsmr_example
```

Note: the two steps above guarantee that the LD correlations are calculated based on the effect alleles for the SNP effects.

```r
# Estimate LD correlation matrix using R
snp_coeff_id = scan("gsmr_example.xmat.gz", what="", nlines=1)
snp_coeff = read.table("gsmr_example.xmat.gz", header=F, skip=2)

# Match the SNP genotype data with the summary data
snp_id = Reduce(intersect, list(gsmr_data$SNP, snp_coeff_id))
gsmr_data = gsmr_data[match(snp_id, gsmr_data$SNP),]
snp_order = match(snp_id, snp_coeff_id)
snp_coeff_id = snp_coeff_id[snp_order]
snp_coeff = snp_coeff[, snp_order]

# Calculate the LD correlation matrix
ldrho = cor(snp_coeff)

# Check the size of the correlation matrix and double-check if the order of the SNPs in the LD correlation matrix is consistent with that in the GWAS summary data
colnames(ldrho) = rownames(ldrho) = snp_coeff_id
dim(ldrho)

## [1] 188 188

# Show the first 5 rows and columns of the matrix
ldrho[1:5,1:5]
```
Note: all the analyses implemented in this R-package only require the summary data (e.g. "gsmr_data") and the LD correlation matrix (e.g. "ldrho") listed above.

2. Standardization

This is an optional process. If the risk factor was not standardised in GWAS, the effect sizes can be scaled using the method below. Note that this process requires allele frequencies, z-statistics and sample size. After scaling, bzx is interpreted as the per-allele effect of a SNP on the exposure in standard deviation units.

```r
snpfreq = gsmr_data$a1_freq  # allele frequencies of the SNPs
bzx = gsmr_data$bzx  # effects of the instruments on risk factor
bzx_se = gsmr_data$bzx_se  # standard errors of bzx
bzx_n = gsmr_data$bzx_n  # GWAS sample size for the risk factor
std_zx = std_effect(snpfreq, bzx, bzx_se, bzx_n)  # perform standardisation

gsmr_data$std_bzx = std_zx$b  # standardized bzx

gsmr_data$std_bzx_se = std_zx$se  # standardized bzx_se
```

3. GSMR analysis

This is the main analysis of this R-package. It uses SNPs associated with the risk factor (e.g. at p < 5e-8) as the instruments to test for putative causal effect of the risk factor on the disease. The analysis involves a step that uses the HEIDI-outlier approach to remove SNPs that have effects on both the risk factor and the disease because of pleiotropy.

```r
bxz = gsmr_data$std_bzx  # SNP effects on the risk factor
bxz_se = gsmr_data$std_bzx_se  # standard errors of bzx
bxz_pval = gsmr_data$bxz_pval  # p-values for bzx

bxz = gsmr_data$bxz  # SNP effects on the disease
bxz_se = gsmr_data$bxz_se  # standard errors of bzx

bzy = gsmr_data$bzy  # SNP effects on the exposure
bzy_pval = gsmr_data$bzy_pval  # p-values for bzy

n_ref = 7703  # Sample size of the reference sample

gwas_thresh = 5e-8  # GWAS threshold to select SNPs as the instruments for the GSMR analysis
single.snp_heidi_thresh = 0.01  # p-value threshold for single-SNP-based HEIDI-outlier analysis
multi.snp_heidi_thresh = 0.01  # p-value threshold for multi-SNP-based HEIDI-outlier analysis
nsnps_thresh = 10  # the minimum number of instruments required for the GSMR analysis
heidi_outlier_flag = T  # flag for HEIDI-outlier analysis

ld_r2_thresh = 0.05  # LD r^2 threshold to remove SNPs in high LD
id_r2_thresh = 0.05  # LD r^2 threshold to remove SNPs in high LD

bzx = gsmr(bzx, bxz, bxz_pval, bzy, bzy_pval, ldrho, snp_coeff_id, n_ref, heidi_outlier_flag, gwas_thresh, single.snp_heidi_thresh, multi.snp_heidi_thresh, nsnps_thresh, ld_r2_thresh, id_r2_thresh, gsmr_beta)  # GSMR analysis

filtered_index = gsmr_results$used_index
```

The estimated effect of the exposure on outcome: 0.4322395

```
## Standard error of bxy: 0.02210985
```
4. Bi-directional GSMR analysis

The script below runs bi-directional GSMR analyses, i.e. a forward-GSMR analysis as described above and a reverse-GSMR analysis that uses SNPs associated with the disease (e.g. at $p < 5e-8$) as the instruments to test for putative causal effect of the disease on risk factor.

```r
gsmr_results = bi_gsmr(bzx, bzx_se, bzx_pval, bzy, bzy_se, bzy_pval, ldrho, snp_coeff_id, n_ref, heidi_outlier_flag, gwas_thresh, single_snp_heidi_thresh, multi_snp_heidi_thresh, nsnps_thresh, ld_r2_thresh, ld_fdr_thresh)  # GSMR analysis

cat("Effect of risk factor on disease: ", gsmr_results$forward_bxy)

## Effect of risk factor on disease: 0.4322395

cat("Standard error of bxy in the forward-GSMR analysis: ", gsmr_results$forward_bxy_se)

## Standard error of bxy in the forward-GSMR analysis: 0.02210985

cat("P-value of bxy in the forward-GSMR analysis: ", gsmr_results$forward_bxy_pval)

## P-value of bxy in the forward-GSMR analysis: 4.15454e-85

cat("Effect of disease on risk factor: ", gsmr_results$reverse_bxy)

## Effect of disease on risk factor: -0.02739421

cat("Standard error of bxy in the reverse-GSMR analysis: ", gsmr_results$reverse_bxy_se)

## Standard error of bxy in the reverse-GSMR analysis: 0.009551025

cat("P-value of bxy in the reverse-GSMR analysis: ", gsmr_results$reverse_bxy_pval)

## P-value of bxy in the reverse-GSMR analysis: 0.004128198
```

5. Visualization
```r
effect_col = colors()[75]
vals = c(bzx[filtered_index]-bzx_se[filtered_index], bzx[filtered_index]+bzx_se[filtered_index])
xmin = min(vals); xmax = max(vals)
vals = c(bzy[filtered_index]-bzy_se[filtered_index], bzy[filtered_index]+bzy_se[filtered_index])
ymin = min(vals); ymax = max(vals)
par(mar=c(5,5,4,2))
plot(bzx[filtered_index], bzy[filtered_index], pch=20, cex=0.8, bty="n", cex.axis=1.1, cex.lab=1.2,
col=effect_col, xlim=c(xmin, xmax), ylim=c(ymin, ymax),
lab=expression(LDL~cholesterol~(italic(b[zx]))),
ylab=expression(Coronary~artery~disease~(italic(b[zy]))))
abline(0, gsmr_results$forward_bxy, lwd=1.5, lty=2, col="dim grey")
snps = length(bzx[filtered_index])
for (i in 1:nsnps) {
  # x axis
  xstart = bzx[filtered_index[i]] - bzx_se[filtered_index[i]]; xend = bzx[filtered_index[i]] + bzx_se[filtered_index[i]]
  ystart = bzy[filtered_index[i]]; yend = bzy[filtered_index[i]]
  segments(xstart, ystart, xend, yend, lwd=1.5, col=effect_col)
  # y axis
  xstart = bzx[filtered_index[i]]; xend = bzx[filtered_index[i]]
  ystart = bzy[filtered_index[i]] - bzy_se[filtered_index[i]]; yend = bzy[filtered_index[i]] + bzy_se[filtered_index[i]]
  segments(xstart, ystart, xend, yend, lwd=1.5, col=effect_col)
}
```

Package Document

bi_gsmr

Bi-directional GSMR analysis is composed of a forward-GSMR analysis and a reverse-GSMR analysis that uses SNPs associated with the disease (e.g. at < 5e-8) as the instruments to test for putative causal effect of the disease on the risk factor.

Usage

```r
bi_gsmr(bzx, bzx_se, bzx_pval, bzy, bzy_se, bzy_pval, ldrho, snpid, heidi_outlier_flag=T, gwas_thresh=5e-8, single.snp.heidi_thresh=0.01, multi.snp.heidi_thresh=0.01, nsnps_thresh=10, ld_r2_thresh=0.05, ld_fdr_thresh=0.05)
```

Arguments

- `bzx`: vector, SNP effects on risk factor
- `bzx_se`: vector, standard errors of bzx
- `bzx_pval`: vector, p values for bzx
- `bzy`: vector, SNP effects on disease
- `bzy_se`: vector, standard errors of bzy
bzy_pval: vector, p values for bzy
ldrho: LD correlation matrix of the SNPs
snpid: genetic instruments
n_ref: sample size of the reference sample
heidi_outlier_flag: flag for HEIDI-outlier analysis
gwas_thresh: threshold p-value to select instruments from GWAS for risk factor
single_snp_heidi_thresh: p-value threshold for single-SNP-based HEIDI-outlier analysis
multi_snp_heidi_thresh: p-value threshold for multi-SNP-based HEIDI-outlier analysis
nsnps_thresh: the minimum number of instruments required for the GSMR analysis (we do not recommend users to set this number smaller than 10)
ld_r2_thresh: LD r2 threshold to remove SNPs in high LD
ld_fdr_thresh: FDR threshold to remove the chance correlations between SNP instruments

Value
Estimate of causative effect of risk factor on disease (forward_bxy), the corresponding standard error (forward_bxy_se), p-value (forward_bxy_pval) and SNP index (forward_index), and estimate of causative effect of disease on risk factor (reverse_bxy), the corresponding standard error (reverse_bxy_se), p-value (reverse_bxy_pval), SNP index (reverse_index), SNPs with missing values, with non-significant p-values and those in LD.

Examples
```
data("gsmr")
gsmr_result = bi_gsmr(gsmr_data$bzx, gsmr_data$bzx_se, gsmr_data$bzx_pval, gsmr_data$bzy, gsmr_data$bzy_se, gsmr_data$bzy_pval, ldrho, gsmr_data$SNP, n_ref, T, 5e-8, 0.01, 0.01, 10, 0.05, 0.05)
```

gsmr
GSMR (Generalised Summary-data-based Mendelian Randomisation) is a flexible and powerful approach that utilises multiple genetic instruments to test for causal association between a risk factor and disease using summary-level data from independent genome-wide association studies.

Usage
```
gsmr(bzx, bzx_se, bzx_pval, bzy, bzy_se, ldrho, snpid, heidi_outlier_flag=T, gwas_thresh=5e-8, single_heidi_thresh=0.01, multi_heidi_thresh=0.01, nsnps_thresh=10, ld_r2_thresh=0.05, ld_fdr_thresh=0.05)
```

Arguments
- **bzx**: vector, SNP effects on risk factor
- **bzx_se**: vector, standard errors of bzx
- **bzx_pval**: vector, p values for bzx
- **bzy**: vector, SNP effects on disease
- **bzy_se**: vector, standard errors of bzy
- **ldrho**: LD correlation matrix of the SNPs
- **snpid**: genetic instruments
- **n_ref**: sample size of the reference sample
- **heidi_outlier_flag**: flag for HEIDI-outlier analysis
- **gwas_thresh**: threshold p-value to select instruments from GWAS for risk factor
- **nsnps_thresh**: the minimum number of instruments required for the GSMR analysis (we do not recommend users to set this number smaller than 10)
- **ld_r2_thresh**: LD r2 threshold to remove SNPs in high LD
- **ld_fdr_thresh**: FDR threshold to remove the chance correlations between SNP instruments
- **gsmr_beta**: GSMR beta version, including a new HEIDI-outlier method (used in a GSMR analysis) that is currently under development and subject to future changes, 1 - the new HEIDI-outlier method, 2 - the original HEIDI-outlier method
- **single_heidi_thresh**: p-value threshold for single-SNP-based HEIDI-outlier analysis
multi_heidi_thresh p-value threshold for multi-SNP-based HEIDI-outlier analysis

Value
Estimate of causative effect of risk factor on disease (bxy), the corresponding standard error (bxy_se), p-value (bxy_pval), SNP index (used_index), SNPs with missing values, with non-significant p-values and those in LD.

Examples
```r
data("gsmr")
gsmr_result = gsmr(gsmr_data$bzx, gsmr_data$bzx_se, gsmr_data$bzx_pval, gsmr_data$bzy, gsmr_data$bzy_se, ldrho, gsmr_data$SNP, n_ref, T, 5e-8, 0.01, 0.01, 0.1, 0.05, 0)
```

std_effect
Standardization of SNP effect and its standard error using z-statistic, allele frequency and sample size

Usage
```r
std_effect(snp_freq, b, se, n)
```

Arguments
- `snp_freq` vector, allele frequencies
- `b` vector, SNP effects on risk factor
- `se` vector, standard errors of `b`
- `n` vector, per-SNP sample sizes for GWAS of the risk factor

Value
Standardised effect (b) and standard error (se)

Examples
```r
data("gsmr")
std_effects = std_effect(gsmr_data$a1_freq, gsmr_data$bzx, gsmr_data$bzx_se, gsmr_data$bzx_n)
```